引用本文: 彭涛, 王见一, 谢三磊, 姚凯, 孙淑娟, 曾于洋, 江海洋. 蛋白质杂化荧光金纳米簇的制备及在汞离子快速检测中的应用. 分析化学, 2018, 46(3): 373-378. doi: 10.11895/j.issn.0253-3820.170353 [复制]
Citation: PENG Tao, WANG Jian-Yi, XIE San-Lei, YAO Kai, SUN Shu-Juan, ZENG Yu-Yang, JIANG Hai-Yang. Preparation of Protein Hybrid Fluorescence Nanoclusters for Rapid Detection of Mercury Ion. Chinese Journal of Analytical Chemistry, 2018, 46(3): 373-378. doi: 10.11895/j.issn.0253-3820.170353 [复制]
蛋白质杂化荧光金纳米簇的制备及在汞离子快速检测中的应用
Preparation of Protein Hybrid Fluorescence Nanoclusters for Rapid Detection of Mercury Ion
以牛血清白蛋白为稳定剂和还原剂,采用一步法合成荧光金纳米簇,并对其进行了表征。制备的荧光金纳米簇呈较规则的球形,粒径均一,约为(2.00 ±0.05)nm,在紫外灯下发出明显的红色荧光,最大激发波长和发射波长分别为360和635 nm。Hg2+可与制备的荧光金纳米簇特异性结合而使其荧光猝灭,基于此建立了"turn-off"型的荧光光谱法快速检测Hg2+含量。优化了荧光金纳米簇的用量、pH值、检测体系等条件。荧光强度与Hg2+浓度有良好的线性关系,在0.5~75.0 μg/L范围内的线性方程为y=-26.76lgx+803.1(R2=0.9951),在75~900 μg/L浓度范围内的线性方程为y=-0.27x+762.02(R2=0.9959),检出限为0.14 μg/L(3σ)。在最优条件下,本方法可在3 min内完成检测。可快速、灵敏、简便地检测自来水中的Hg2+,自来水样品加标回收率在86.8%~113.4%之间(n=3),相对标准偏差小于15%。
One-step green synthetic approach, with bovine serum albumin (BSA) as stabilizer and reductant, was developed for preparation of BSA hybrid fluorescence gold nanoclusters (AuNCs@BSA). The prepared AuNCs@BSA exhibited strong red fluorescence under UV light illumination. Upon excited at 360 nm, the fluorescence spectrum of AuNCs@BSA exhibited maximum emission peak at 635 nm. AuNCs@BSA was presented as uniform spherical morphology with diameter at (2.0±0.05) nm. The fluorescence of AuNCs@BSA could be quenched by Hg2+ because of its metallophilic reaction. Based on the fluorescent spectrometry, a rapid detection system was developed for Hg2+ detection in tap water. The AuNCs@BSA amount, pH and buffer system were optimized in this study. According to optimization results, ultrapure water (pH 5.0) was selected to dilute the AuNCs@BSA by 100 times, and 50 μL/well of AuNCs@BSA dilution was applied to detect mercury ion in tap water. Under the optimized conditions, the detection could be completed within 3 min, the fluorescence intensity of the system was linearly proportional to the concentration of mercury ion in the range of 0.5-900 μg/L with linear equations y=-26.76lgx + 803.1 (0.5-75 μg/L, R2=0.9951) and y=-0.27x+762.02 (75-900 μg/L, R2=0.9959). The limit of detection was 0.14 μg/L(3σ). The average recoveries in spiked tape water samples ranged from 86.8%-113.4% with relative standard deviation of less than 15%. The result implied that the developed method was able to apply to detect mercury ion rapidly, sensitively and conveniently.
[1] |
Zhang L, Wang E. Nano Today, 2014, 9(1): 132-157. doi: 10.1016/j.nantod.2014.02.010 |
[2] |
Voet A R D, Tame J R H. Curr. Opin. Biotech., 2017, 46: 14-19. doi: 10.1016/j.copbio.2016.10.015 |
[3] |
AN Xiao-Gang, DU Jie, QI Wei-Nan, LIU Lu, LI Xiao-Yan, GAN Hai-Ling, LU Xiao-Quan. Chinese J. Anal. Chem., 2017, 45(8): 1209-1214. doi: 10.11895/j.issn.0253-3820.160865 安晓刚, 杜捷, 齐伟男, 刘璐, 李小燕, 甘海玲, 卢小泉. 分析化学, 2017, 45(8): 1209-1214. doi: 10.11895/j.issn.0253-3820.160865 |
[4] |
Wen F, Dong Y, Feng L, Wang S, Zhang S, Zhang X. Anal. Chem., 2011, 83(4): 1193-1196. doi: 10.1021/ac1031447 |
[5] |
Deng H H, Zhang L N, He S B, Liu A L, Li G W, Lin X H, Xia X H, Chen W. Biosens. Bioelectron., 2015, 65: 397-403. doi: 10.1016/j.bios.2014.10.071 |
[6] |
Wang S, Liu P, Qin Y, Chen Z, Shen J. Sens. Actuators B, 2016, 223: 178-185. doi: 10.1016/j.snb.2015.09.058 |
[7] |
Xie J, Zheng Y, Ying J Y. J. Am. Chem. Soc., 2009, 131(3): 888-889. doi: 10.1021/ja806804u |
[8] |
XU Sheng-Hao, MAO Ya-Ning, YU Xi-Juan, LUO Xi-Liang. Journal of Qingdao University of Science and Technology:Natutral Science Edition, 2015, 36(4): 355-362 |
[9] |
Hu L, Han S, Parveen S, Yuan Y, Zhang L, Xu G. Biosens. Bioelectron., 2012, 32(1): 297-299. doi: 10.1016/j.bios.2011.12.007 |
[10] |
Qi Y X, Zhang M, Zhu A, Shi G. Analyst, 2015, 140(16): 5656-5661. doi: 10.1039/C5AN00802F |
[11] |
Xu P, Li R, Tu Y, Yan J. Talanta, 2015, 144: 704-709. doi: 10.1016/j.talanta.2015.07.027 |
[12] |
Zhang Y, Jiang H, Wang X. Anal. Chim. Acta, 2015, 870: 1-7. doi: 10.1016/j.aca.2015.01.016 |
[13] |
Nolan E M, Lippard S J. Chem. Rev., 2008, 108(9): 3443-3480. doi: 10.1021/cr068000q |
[14] |
Järup L. Brit. Med. Bull., 2003, 68(1): 167-182. doi: 10.1093/bmb/ldg032 |
[15] |
GB5749-2006. Sanitary Standard for Drinking Water Quality. National standards of the People's Republic of China 生活饮用水卫生标准. 中华人民共和国国家标准. GB5749-2006 |
[16] |
Xuan F, Luo X, Hsing I M. Anal. Chem., 2013, 85(9): 4586-4593. doi: 10.1021/ac400228q |
[17] |
Zhao W, Brook M A, Li Y. ChemBioChem, 2008, 9(15): 2363-2371. doi: 10.1002/cbic.v9:15 |
[18] |
López-García I, Rivas R E, Hernández-Córdoba M. Anal. Chim. Acta, 2012, 743: 69-74. doi: 10.1016/j.aca.2012.07.015 |
[19] |
Leopold K, Foulkes M, Worsfold P. Anal. Chim. Acta, 2010, 663(2): 127-138. doi: 10.1016/j.aca.2010.01.048 |
[20] |
Xie J, Zheng Y, Ying J Y. Chem. Commun., 2010, 46(6): 961-963. doi: 10.1039/B920748A |
[21] |
Pei X Y, Wang Q, Li X M, Xie J, Xie S L, Peng T, Wang C, Sun Y Z, Jiang H Y. Food Anal. Methods, 2016, 9(7): 1919-1927. doi: 10.1007/s12161-015-0360-y |
[22] |
Tao Y, Lin Y H, Ren J S, Qu X G. Biosens. Bioelectron., 2013, 42: 41-46. doi: 10.1016/j.bios.2012.10.014 |
[23] |
XXu Y, Palchoudhury S, Qin Y, Macher T, Bao Y. Langmuir, 2012, 28(23): 8767-8772. doi: 10.1021/la301200g |
[24] |
Hu D, Sheng Z, Gong P, Zhang P, Cai L. Analyst, 2010, 135(6): 1411-1416. doi: 10.1039/c000589d |
[25] |
Chai F, Wang T, Li L, Liu H, Zhang L, Su Z, Wang C. Nanoscale Res. Lett., 2010, 5(11): 1856-. doi: 10.1007/s11671-010-9730-y |
[26] |
Qiao Y, Zhang Y, Zhang C, Shi L H, Zhang G M, Shuang S M, Dong C, Ma H M. Sens. Actuators B, 2016, 224: 458-464. doi: 10.1016/j.snb.2015.10.080 |
[27] |
Luo T, Zhang S, Wang Y, Wang M N, Liao M, Kou X M. Luminescence, 2017, 32(6): 1092-1099. doi: 10.1002/bio.v32.6 |
[28] |
Nhan D T, Nhung N T A, Vien V, Trung N T, Cuong N D, Bao N C, Huong D Q, Hien N K, Quang D T. Chem. Lett., 2016, 46(1): 135-138 |
[29] |
Tan L L, Chen Z B, Zhang C, Wei X C, Lou T H, Zhao Y. Small, 2017, 13(14): 1603340- |
[30] |
Zhang S T, Zhang D X, Zhang XH, Shang D H, Xue Z H, Shan D L, Lu X Q. Anal. Chem., 2017, 89(6): 3538-3544. doi: 10.1021/acs.analchem.6b04805 |
[31] |
Ding X, Kong L, Wang J, Fang F, Li D D, Liu J H. ACS Appl. Mater. Interfaces, 2013, 5(15): 7072-7078. doi: 10.1021/am401373e |
[32] |
Chen J, Zhou S, Wen J. Anal. Chem., 2014, 86(6): 3108-3114. doi: 10.1021/ac404170j |
蛋白质杂化荧光金纳米簇的制备及在汞离子快速检测中的应用
Preparation of Protein Hybrid Fluorescence Nanoclusters for Rapid Detection of Mercury Ion
计量
- PDF下载量(81)
- 文章访问量(954)
- HTML全文浏览量(39)