会员登陆: 用户名:  密码: 验证码:
首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   杨洁, 李爽, 武雪原, 龙亿涛. 生物纳米孔道技术在非基因测序方面的研究与应用. 分析化学, 2017, 45(12): 1766-1775. doi:  10.11895/j.issn.0253-3820.171201 [复制]

Citation:   YANG Jie, LI Shuang, WU Xue-Yuan, LONG Yi-Tao. Development of Biological Nanopore Technique in Non-gene Sequencing Application. Chinese Journal of Analytical Chemistry, 2017, 45(12): 1766-1775. doi: 10.11895/j.issn.0253-3820.171201 [复制]

生物纳米孔道技术在非基因测序方面的研究与应用

通讯作者:  龙亿涛, ytlong@ecust.edu.cn

收稿日期: 2017-08-27

接受日期: 2017-10-10

出版日期: 2017-12-20

基金项目: 本文系国家自然科学基金项目(Nos.21421004,21327807)、高等学校学科创新引智计划(No.b16017)、上海市教育委员会科研创新计划(No.2017-01-07-00-02-e00023)、中央高校基本科研业务费专项资金(Nos.222201718001,222201717003)资助

Development of Biological Nanopore Technique in Non-gene Sequencing Application

Corresponding author:  LONG Yi-Tao, ytlong@ecust.edu.cn

Received Date:  2017-08-27

Accepted Date:  2017-10-10

Published Date:  2017-12-20

Fund Project:  This work was supported by the National Natural Science Foundation of China (Nos. 21421004, 21327807), the Program of Introducing Talents of Discipline to Universities (No. B16017), the Innovation Program of Shanghai Municipal Education Commission (No. 2017-01-07-00-02-E00023) and the Fundamental Research Funds for the Central Universities (Nos. 222201718001, 222201717003)

纳米孔道分析技术是一种低成本、快速、无需标记的单分子检测技术,仅有20多年的发展历史,在DNA单分子测序领域展示出较好的应用前景,现已有商业化的产品面世且趋于成熟。越来越多的研究表明,纳米孔可作为一个通用的单分子传感器。本文综述了生物纳米孔道分析技术对蛋白质、多肽和核酸等单个分子与孔道间相互作用、动力学和热力学过程的实时监测以及多种生物大分子和金属离子的定量检测等方面的研究进展。在纳米孔技术中,电化学检测系统也十分重要,本文还特别介绍了高带宽及超低电流分辨仪器和相关软件的相关进展。

关键词:   纳米孔道, 单分子检测, 电化学分析, 超低电流放大器, 评述
Key words:   Nanochannel, Single-molecule detection, Electrochemical analysis, Ultralow current amplifier, Review
[1]

Kasianowicz J J, Brandin E, Branton D, Deamer D W. Proc. Natl. Acad. Sci. USA, 1996, 93(24): 13770-13773. doi: 10.1073/pnas.93.24.13770

[2]

Butler T Z, Pavlenok M, Derrington I M, Niederweis M, Gundlach J H. Proc. Natl. Acad. Sci. USA, 2008, 105(52): 20647-20652. doi: 10.1073/pnas.0807514106

[3]

Niederweis M. Mol. Microbiol., 2003, 49(5): 1167-1177. doi: 10.1046/j.1365-2958.2003.03662.x

[4]

Wendell D, Jing P, Geng J, Subramaniam V, Lee T J, Montemagno C, Guo P. Nat. Nanotech., 2009, 4(11): 765-772. doi: 10.1038/nnano.2009.259

[5]

Soskine M, Biesemans A, De Maeyer M, Maglia G. J.Am.Chem.Soc., 2013, 135(36): 13456-13463. doi: 10.1021/ja4053398

[6]

Mohammad M M, Iyer R, Howard K R, Mcpike M P, Borer P N, Movileanu L. J. Am.Chem.Soc., 2012, 134(22): 9521-9531. doi: 10.1021/ja3043646

[7]

Aoki T, Hirano M, Takeuchi Y, Kobayashi T, Yanagida T, Ide T. P. Jpn. Acad. B, 2010, 86(9): 920-925. doi: 10.2183/pjab.86.920

[8]

Goyal P, Krasteva P V, Van Gerven N, Gubellini F, Van Den Broeck I, Troupiotis-Tsailaki A, Jonckheere W, Pehau-Arnaudet G, Pinkner J S, Chapman M R, Hultgren S J, Howorka S, Fronzes R, Remaut H. Nature, 2014, 516(7530): 250-253. doi: 10.1038/nature13768

[9]

Wang H Y, Li Y, Qin L X, Heyman A, Shoseyov O, Willner I, Long Y T, Tian H. Chem. Commun., 2013, 49(17): 1741-1743. doi: 10.1039/c3cc38939a

[10]

Wang Y, Montana V, Grubišić V, Stout R F, Parpura V, Gu L Q. ACS Appl. Mater. Interfaces, 2015, 7(1): 184-192. doi: 10.1021/am5056596

[11]

Cao C, Ying Y L, Hu Z L, Liao D F, Tian H, Long Y T. Nat. Nanotech., 2016, 11(8): 713-718. doi: 10.1038/nnano.2016.66

[12]

Cao C, Yu J, Wang Y Q, Ying Y L, Long Y T. Anal. Chem., 2016, 88(10): 5046-5049. doi: 10.1021/acs.analchem.6b01514

[13]

CAO Chan, LIAO Dong-Fang, YING Yi-Lun, LONG Yi-Tao. Acta Chimica Sinica, 2016, 74(9): 734-737

曹婵, 廖冬芳, 应佚伦, 龙亿涛. 化学学报, 2016, 74(9): 734-737

[14]

Cao C, Liao D F, Yu J, Long Y T. Nat. Protoc., 2017, 12(9): 1901-. doi: 10.1038/nprot.2017.077

[15]

Cao C, Yu J, Li M Y, Wang Y Q, Tian H, Long Y T. Small, 2017, : -. doi: 10.1002/smll.201702011

[16]

Storm A J, Chen J H, Ling X S, Zandbergen H W, Dekker C. J. Appl. Phys., 2005, 98(1): 014307-. doi: 10.1063/1.1947391

[17]

Lin Y, Shi X, Liu S C, Ying Y L, Li Q, Gao R, Fathi F, Long Y T, Tian H. Chem. Commun., 2017, 53(25): 3539-3542. doi: 10.1039/C7CC00060J

[18]

Shi X, Gao R, Ying Y L, Si W, Chen Y F, Long Y T. ACS Sensors, 2016, 1(9): 1086-1090. doi: 10.1021/acssensors.6b00408

[19]

Shi X, Gao R, Ying Y L, Si W, Chen Y, Long Y T. Faraday Discuss., 2015, 184: 85-99. doi: 10.1039/C5FD00060B

[20]

Ruby Dela T, Joseph L, Alon S, Amit M. Nanotechnology, 2012, 23(38): 385308-. doi: 10.1088/0957-4484/23/38/385308

[21]

Venkatesan B M, Dorvel B, Yemenicioglu S, Watkins N, Petrov I, Bashir R. Adv. Mater., 2009, 21(27): 2771-2776. doi: 10.1002/adma.200803786

[22]

Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A. Nature, 2010, 467(7312): 190-193. doi: 10.1038/nature09379

[23]

Traversif, Raillonc, Benameur, Liuk, Khlybovs, Tosunm, Krasnozhond, Kisa, Radenovica. Nat. Nanotech., 2013, 8(12): 939-945. doi: 10.1038/nnano.2013.240

[24]

Li J, Stein D, Mcmullan C, Branton D, Aziz M J, Golovchenko J A. Nature, 2001, 412(6843): 166-169. doi: 10.1038/35084037

[25]

Wanunu M, Dadosh T, Ray V, Jin J, McReynolds L, Drndić M. Nat. Nanotech., 2010, 5(11): 807-814. doi: 10.1038/nnano.2010.202

[26]

Chen P, Mitsui T, Farmer D B, Golovchenko J, Gordon R G, Branton D. Nano Lett., 2004, 4(7): 1333-1337. doi: 10.1021/nl0494001

[27]

Zhang S, Sun T, Wang E, Wang J. Chin. Sci. Bull., 2014, 59(35): 4946-4952. doi: 10.1007/s11434-014-0626-6

[28]

Jiang Y, Liu N, Guo W, Xia F, Jiang L. J. Am. Chem. Soc., 2012, 134(37): 15395-15401. doi: 10.1021/ja3053333

[29]

Li P, Xie G, Kong X Y, Zhang Z, Xiao K, Wen L, Jiang L. Angew. Chem. Int. Ed., 2016, 55(50): 15637-15641. doi: 10.1002/anie.201609161

[30]

Venkatesan B M, Bashir R. Nat. Nanotech., 2011, 6(10): 615-624. doi: 10.1038/nnano.2011.129

[31]

Ying Y L, Zhang J, Gao R, Long Y T. Angew. Chem. Int. Ed., 2013, 52(50): 13154-13161. doi: 10.1002/anie.201303529

[32]

Gao R, Ying Y L, Yan B Y, Long Y T. Chin. Sci. Bull., 2014, 59(35): 4968-4973. doi: 10.1007/s11434-014-0656-0

[33]

Guo Y, Jian F, Kang X. RSC Adv., 2017, 7(25): 15315-15320. doi: 10.1039/C7RA00454K

[34]

Yao F, Zhang Y, Wei Y, Kang X F. Chem. Commun., 2014, 50(89): 13853-13856. doi: 10.1039/C4CC06135G

[35]

Xi D, Shang J, Fan E, You J, Zhang S, Wang H. Anal. Chem., 2016, 88(21): 10540-10546. doi: 10.1021/acs.analchem.6b02620

[36]

Zhao Q, De Zoysa R S S, Wang D, Jayawardhana D A, Guan X. J. Am. Chem. Soc., 2009, 131(18): 6324-6325. doi: 10.1021/ja9004893

[37]

Sutherland T C, Long Y T, Stefureac R I, Bediako Amoa I, Kraatz H B, Lee J S. Nano Lett., 2004, 4(7): 1273-1277. doi: 10.1021/nl049413e

[38]

Long Y, Zhang M. Sci. China, Ser. B:Chem., 2009, 52(6): 731-733. doi: 10.1007/s11426-009-0078-z

[39]

Movileanu L, Schmittschmitt J P, Martin Scholtz J, Bayley H. Biophys. J., 2005, 89(2): 1030-1045. doi: 10.1529/biophysj.104.057406

[40]

Mohammad M M, Prakash S, Matouschek A, Movileanu L. J. Am. Chem. Soc., 2008, 130(12): 4081-4088. doi: 10.1021/ja710787a

[41]

Merstorf C, Cressiot B, Pastoriza Gallego M, Oukhaled A, Betton J M, Auvray L, Pelta J. ACS Chem. Biol., 2012, 7(4): 652-658. doi: 10.1021/cb2004737

[42]

Mereuta L, Asandei A, Seo C H, Park Y, Luchian T. ACS Appl. Mater. Interfaces, 2014, 6(15): 13242-13256. doi: 10.1021/am5031177

[43]

Mereuta L, Roy M, Asandei A, Lee J, Park Y, Andricioaei I, Luchian T. Sci. Rep., 2014, 4: 3885-

[44]

Asandei A, Chinappi M, Kang H K, Seo C H, Mereuta L, Park Y, Luchian T. ACS Appl. Mater. Interfaces, 2015, 7(30): 16706-16714. doi: 10.1021/acsami.5b04406

[45]

Rodriguez-Larrea D, Bayley H. Nat. Nanotech., 2013, 8(4): 288-295. doi: 10.1038/nnano.2013.22

[46]

Wang H Y, Gu Z, Cao C, Wang J, Long Y T. Anal. Chem., 2013, 85(17): 8254-8261. doi: 10.1021/ac401496x

[47]

Wang H Y, Ying Y L, Li Y, Kraatz H B, Long Y T. Anal. Chem., 2011, 83(5): 1746-1752. doi: 10.1021/ac1029874

[48]

Hu Y X, Ying Y L, Gu Z, Cao C, Yan B Y, Wang H F, Long Y T. Chem. Commun., 2016, 52(32): 5542-5545. doi: 10.1039/C6CC01292B

[49]

Wang Y, Montana V, Grubisic V, Stout R F, Jr. , Parpura V, Gu L Q. ACS Appl. Mater. Interfaces, 2015, 7(1): 184-192. doi: 10.1021/am5056596

[50]

Movileanu L, Howorka S, Braha O, Bayley H. Nat. Biotech., 2000, 18(10): 1091-1095. doi: 10.1038/80295

[51]

Wei R, Gatterdam V, Wieneke R, Tampe R, Rant U. Nat. Nanotech., 2012, 7(4): 257-263. doi: 10.1038/nnano.2012.24

[52]

Uram J D, Ke K, Hunt A J, Mayer M. Small, 2006, 2(8-9): 967-972. doi: 10.1002/(ISSN)1613-6829

[53]

Takakura T, Yanagi I, Goto Y, Ishige Y, Kohara Y. Appl. Phys. Lett., 2016, 108(12): 123701-. doi: 10.1063/1.4944641

[54]

Jung J Y, Thornton T J, Chiari M, Kim T H. Jpn. J. Appl. Phys, 2011, 50: 127002-. doi: 10.7567/JJAP.50.127002

[55]

Schibel A E, Ervin E N. Langmuir, 2014, 30(37): 11248-11256. doi: 10.1021/la502714b

[56]

Wang H Y, Song Z Y, Zhang H S, Chen S P. Microchim. Acta, 2016, 183(3): 1003-1010. doi: 10.1007/s00604-015-1699-x

[57]

Shim J W, Tan Q, Gu L Q. Nucleic Acids Res., 2009, 37(3): 972-982. doi: 10.1093/nar/gkn968

[58]

Ying Y L, Wang H Y, Sutherland T C, Long Y T. Small, 2011, 7(1): 87-94. doi: 10.1002/smll.v7.1

[59]

Zhang X, Zhang J, Ying Y L, Tian H, Long Y T. Chem. Sci., 2014, 5(7): 2642-2646. doi: 10.1039/c4sc00134f

[60]

Rotem D, Jayasinghe L, Salichou M, Bayley H. J. Am. Chem. Soc., 2012, 134(5): 2781-2787. doi: 10.1021/ja2105653

[61]

Zhang L, Zhang K, Liu G, Liu M, Liu Y, Li J. Anal. Chem., 2015, 87(11): 5677-5682. doi: 10.1021/acs.analchem.5b00791

[62]

Kawano R, Osaki T, Sasaki H, Takinoue M, Yoshizawa S, Takeuchi S. J. Am. Chem. Soc., 2011, 133(22): 8474-8477. doi: 10.1021/ja2026085

[63]

Wen S, Zeng T, Liu L, Zhao K, Zhao Y, Liu X, Wu H C. J. Am. Chem. Soc., 2011, 133(45): 18312-18317. doi: 10.1021/ja206983z

[64]

Yang C, Liu L, Zeng T, Yang D, Yao Z, Zhao Y, Wu H C. Anal. Chem., 2013, 85(15): 7302-7307. doi: 10.1021/ac401198d

[65]

Ying Y L, Zhang J, Meng F N, Cao C, Yao X, Willner I, Tian H, Long Y T. Sci. Rep., 2013, 3: 1662-. doi: 10.1038/srep01662

[66]

Meng F N, Yao X, Ying Y L, Zhang J, Tian H, Long Y T. Chem. Commun., 2015, 51(7): 1202-1205. doi: 10.1039/C4CC07919A

[67]

Li T, Liu L, Li Y, Xie J, Wu H C. Angew. Chem. Int. Ed., 2015, 54(26): 7568-7571. doi: 10.1002/anie.201502047

[68]

DUAN Jing, ZHUO Sha, YAO Fu-Jun, ZHANG Ya-Ni, KANG Xiao-Feng. Chinese J. Anal. Chem., 2016, 44(12): 1801-1807

段静, 卓莎, 姚付军, 张亚妮, 亢晓峰. 分析化学, 2016, 44(12): 1801-1807

[69]

Shin S H, Bayley H. J. Am. Chem. Soc., 2005, 127(30): 10462-10463. doi: 10.1021/ja052194u

[70]

Lee J, Bayley H. Proc. Natl. Acad. Sci. USA, 2015, 112(45): 13768-13773. doi: 10.1073/pnas.1510565112

[71]

Rosenstein J K, Wanunu M, Merchant C A, Drndic M, Shepard K L. Nat. Methods, 2012, 9(5): 487-492. doi: 10.1038/nmeth.1932

[72]

YAN Bing-Yong, GU Zhen, GAO Rui, CAO Chan, YING Yi-Lun, MA Wei, LONG Yi-Tao. Chinese J. Anal. Chem., 2015, 43(7): 971-976. doi: 10.11895/j.issn.0253-3820.150159

颜秉勇, 顾震, 高瑞, 曹婵, 应佚伦, 马巍, 龙亿涛. 分析化学, 2015, 43(7): 971-976. doi: 10.11895/j.issn.0253-3820.150159

[73]

Zhang J, Liu X, Ying Y L, Gu Z, Meng F N, Long Y T. Nanoscale, 2017, 9(10): 3458-3465. doi: 10.1039/C6NR09135K

[74]

Gu Z, Ying Y L, Cao C, He P, Long Y T. Anal. Chem., 2015, 87(2): 907-913. doi: 10.1021/ac5028758

[75]

Dunbar W B. Anal. Chem., 2015, 87(20): 10650-10652. doi: 10.1021/acs.analchem.5b02281

[76]

Gu Z, Ying Y L, Yan B Y, Wang H F, He P G, Long Y T. Chin. Chem. Lett., 2014, 25(7): 1029-1032. doi: 10.1016/j.cclet.2014.05.009

计量
  • PDF下载量(23)
  • 文章访问量(134)
  • HTML全文浏览量(10)

目录

生物纳米孔道技术在非基因测序方面的研究与应用

杨洁, 李爽, 武雪原, 龙亿涛

Figures and Tables