会员登陆: 用户名:  密码: 验证码:
首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   刘慧, 刘梦丽, 侯鹏, 黄承志. 异元素掺杂碳点的制备及其在生物成像中的应用. 分析化学, 2017, 45(12): 1845-1856. doi:  10.11895/j.issn.0253-3820.171296 [复制]

Citation:   LIU Hui, LIU Meng-Li, HOU Peng, HUANG Cheng-Zhi. Preparation of Element-doped Fluorescent Carbon Dots and Their Applications in Biological Imaging. Chinese Journal of Analytical Chemistry, 2017, 45(12): 1845-1856. doi: 10.11895/j.issn.0253-3820.171296 [复制]

异元素掺杂碳点的制备及其在生物成像中的应用

通讯作者:  黄承志, chengzhi@swu.edu.cn

收稿日期: 2017-10-06

接受日期: 2017-10-31

出版日期: 2017-12-20

基金项目: 本文系国家自然科学基金项目(Nos.21535006,21705132)和中央高校基本科研业务费专项基金(No.XDJK2017C065)资助

Preparation of Element-doped Fluorescent Carbon Dots and Their Applications in Biological Imaging

Corresponding author:  HUANG Cheng-Zhi, chengzhi@swu.edu.cn

Received Date:  2017-10-06

Accepted Date:  2017-10-31

Published Date:  2017-12-20

Fund Project:  This work was supported by the National Natural Science Foundation of China (Nos. 21535006, 21705132) and the Fundamental Research Funds for the Central Universities (No. XDJK2017C065)

荧光碳点具有良好的生物相容性和优良的抗光漂白能力,因此碳点在生物荧光成像方面的应用潜力受到广泛关注,但是碳点相对较低的荧光量子产率和缺乏近红外荧光发射的缺陷限制了碳点在荧光成像分析中的应用。随着异元素掺杂对碳点结构和荧光性质的改善,碳点被越来越广泛地用于生物成像。本文对近年来元素掺杂碳点的合成方法、异元素掺杂对碳点光学性质的影响和元素掺杂碳点在成像分析中的进展进行了综述,并对其应用前景进行了展望。

关键词:   碳点, 元素掺杂, 荧光成像, 评述
Key words:   Fluorescent carbon dots, Element doping, Fluorescence imaging, Review
[1]

Cayuela A, Soriano M L, Carrillo-Carrión C, Valcárcel M. Chem. Commun., 2016, 52(7): 1311-1326. doi: 10.1039/C5CC07754K

[2]

Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126(40): 12736-12737. doi: 10.1021/ja040082h

[3]

Cao L, Wang X, Meziani M J, Lu F S, Wang H F, Luo P G, Lin Y, Harruff B A, Veca L M, Murray D, Xie S Y, Sun Y P. J. Am. Chem. Soc., 2007, 129(37): 11318-11319. doi: 10.1021/ja073527l

[4]

Yang S T, Cao L, Luo P G, Lu F S, Wang X, Wang H F, Meziani M J, Liu Y F, Qi G, Sun Y P. J. Am. Chem. Soc., 2009, 131(32): 11308-11309. doi: 10.1021/ja904843x

[5]

Bao L, Zhang Z L, Tian Z Q, Zhang L, Liu C, Lin Y, Qi B, Pang D W. Adv. Mater., 2011, 23(48): 5801-5806. doi: 10.1002/adma.v23.48

[6]

Lu J, Yang J X, Wang J Z, Lim A L, Wang S, Loh K P. ACS Nano, 2009, 3(8): 2367-2375. doi: 10.1021/nn900546b

[7]

Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, Fang D, Sun H, Fan L, Han M, Liu C, Yang S. J. Mater. Chem., 2012, 22(15): 7461-7467. doi: 10.1039/c2jm16835a

[8]

Qu Q, Zhu A W, Shao X L, Shi G Y, Tian Y. Chem. Commun., 2012, 48(44): 5473-5475. doi: 10.1039/c2cc31000g

[9]

Bao L, Liu C, Zhang Z L, Pang D W. Adv. Mater., 2015, 27(10): 1663-1667. doi: 10.1002/adma.201405070

[10]

Qi B P, Hu H, Bao L, Zhang Z L, Tang B, Peng Y, Wang B S, Pang D W. Nanoscale, 2015, 7(14): 5969-5973. doi: 10.1039/C5NR00842E

[11]

Liu H P, Ye T, Mao C D. Angew. Chem. Int. Ed., 2007, 46(34): 6473-6475. doi: 10.1002/(ISSN)1521-3773

[12]

Huang X, Zhang F, Zhu L, Choi K Y, Guo N, Guo J, Tackett K, Anilkumar P, Liu G, Quan Q, Choi H S, Niu G, Sun Y P, Lee S, Chen X. ACS Nano, 2013, 7(7): 5684-5693. doi: 10.1021/nn401911k

[13]

Liu R, Wu D, Feng X, Mullen K. J. Am. Chem. Soc., 2011, 133(39): 15221-15223. doi: 10.1021/ja204953k

[14]

Baker S N, Baker G A. Angew. Chem. Int. Ed., 2010, 49(38): 6726-6744. doi: 10.1002/anie.200906623

[15]

Esteves da Silva J C G, Gonçalves H M R. TrAC-Trends Anal. Chem., 2011, 30(8): 1327-1336. doi: 10.1016/j.trac.2011.04.009

[16]

Shen J, Zhu Y, Yang X, Li C. Chem. Commun., 2012, 48(31): 3686-3699. doi: 10.1039/c2cc00110a

[17]

Lim S Y, Shen W, Gao Z Q. Chem. Soc. Rev., 2015, 44(1): 362-381. doi: 10.1039/C4CS00269E

[18]

Zhao A, Chen Z, Zhao C, Gao N, Ren J, Qu X. Carbon, 2015, 85: 309-327. doi: 10.1016/j.carbon.2014.12.045

[19]

Zheng X T, Ananthanarayanan A, Luo K Q, Chen P. Small, 2015, 11(14): 1620-1636. doi: 10.1002/smll.v11.14

[20]

Mhetaer Tuerhong, XU Yang, YIN Xue-Bo. Chinese J. Anal. Chem., 2017, 45(1): 139-150. doi: 10.11895/j.issn.0253-3820.160295

木合塔尔·吐尔洪, 徐阳, 尹学博. 分析化学, 2017, 45(1): 139-150. doi: 10.11895/j.issn.0253-3820.160295

[21]

Xue M, Zou M, Zhao J, Zhan Z, Zhao S. J. Mater. Chem. B, 2015, 3(33): 6783-6789. doi: 10.1039/C5TB01073J

[22]

Wang Q, Liu X, Zhang L C, Lv Y. Analyst, 2012, 137(22): 5392-5397. doi: 10.1039/c2an36059d

[23]

Park Y, Yoo J, Lim B, Kwon W, Rhee S W. J. Mater. Chem. A, 2016, 4(30): 11582-11603. doi: 10.1039/C6TA04813G

[24]

Du Y, Guo S. Nanoscale, 2016, 8(5): 2532-2543. doi: 10.1039/C5NR07579C

[25]

Li S, Li Y, Cao J, Zhu J, Fan L, Li X. Anal. Chem., 2014, 86(20): 10201-10207. doi: 10.1021/ac503183y

[26]

Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L. J. Am. Chem. Soc., 2012, 134(1): 15-18. doi: 10.1021/ja206030c

[27]

Zhao J, Tang L, Xiang J, Ji R, Hu Y, Yuan J, Zhao J, Tai Y, Cai Y. RSC Adv., 2015, 5(37): 29222-29229. doi: 10.1039/C5RA02358K

[28]

Gao M X, Liu C F, Wu Z L, Zeng Q L, Yang X X, Wu W B, Li Y F, Huang C Z. Chem. Commun., 2013, 49(73): 8015-8017. doi: 10.1039/c3cc44624g

[29]

Ju J, Chen W. Biosens. Bioelectron., 2014, 58: 219-225. doi: 10.1016/j.bios.2014.02.061

[30]

Tan D, Liu X, Qiu J. RSC Adv., 2015, 5(102): 84276-84279. doi: 10.1039/C5RA19216A

[31]

Bera K, Sau A, Mondal P, Mukherjee R, Mookherjee D, Metya A, Kundu A K, Mandal D, Satpati B, Chakrabarti O, Basu S. Chem. Mater., 2016, 28(20): 7404-7413. doi: 10.1021/acs.chemmater.6b03008

[32]

Krysmann M J, Kelarakis A, Dallas P, Giannelis E P. J. Am. Chem. Soc., 2012, 134(2): 747-750. doi: 10.1021/ja204661r

[33]

Zhou W, Dong S, Lin Y, Lu C. Chem. Commun., 2017, 53(13): 2122-2125. doi: 10.1039/C7CC00169J

[34]

Zhang Y, Li C, Fan Y, Wang C, Yang R, Liu X, Zhou L. Nanoscale, 2016, 8(47): 19744-19753. doi: 10.1039/C6NR06553H

[35]

Xu X, Zhang K, Zhao L, Li C, Bu W, Shen Y, Gu Z, Chang B, Zheng C, Lin C, Sun H, Yang B. ACS Appl. Mater. Interfaces, 2016, 8(48): 32706-32716. doi: 10.1021/acsami.6b12252

[36]

Huang H, Li C, Zhu S, Wang H, Chen C, Wang Z, Bai T, Shi Z, Feng S. Langmuir, 2014, 30(45): 13542-13548. doi: 10.1021/la503969z

[37]

Zhai X, Zhang P, Liu C, Bai T, Li W, Dai L, Liu W. Chem. Commun., 2012, 48(64): 7955-7957. doi: 10.1039/c2cc33869f

[38]

Wang J, Li R S, Zhang H Z, Wang N, Zhang Z, Huang C Z. Biosens. Bioelectron., 2017, 97: 157-163. doi: 10.1016/j.bios.2017.05.035

[39]

Tang Y, Su Y, Yang N, Zhang L, Lv Y. Anal. Chem., 2014, 86(9): 4528-4535. doi: 10.1021/ac5005162

[40]

Li X, Lau S P, Tang L, Ji R, Yang P. J. Mater. Chem. C, 2013, 1(44): 7308-7313. doi: 10.1039/c3tc31473a

[41]

Wang W, Damm C, Walter J, Nacken T J, Peukert W. Phys. Chem. Chem. Phys., 2016, 18(1): 466-475. doi: 10.1039/C5CP04942C

[42]

Shangguan J F, He D G, He X X, Wang K M, Xu F Z, Liu J Q, Tang J L, Yang X, Huang J. Anal. Chem., 2016, 88(15): 7837-7843. doi: 10.1021/acs.analchem.6b01932

[43]

Xu J, Zhou Y, Cheng G, Dong M, Liu S, Huang C. Luminescence, 2015, 30(4): 411-415. doi: 10.1002/bio.v30.4

[44]

Tong G, Wang J, Wang R, Guo X, He L, Qiu F, Wang G, Zhu B, Zhu X, Liu T. J. Mater. Chem. B, 2015, 3(4): 700-706. doi: 10.1039/C4TB01643B

[45]

Jiang K, Sun S, Zhang L, Lu Y, Wu A, Cai C, Lin H. Angew. Chem. Int. Ed., 2015, 54(18): 5360-5363. doi: 10.1002/anie.201501193

[46]

Zhu X, Zuo X, Hu R, Xiao X, Liang Y, Nan J. Mater. Chem. Phys., 2014, 147(3): 963-967. doi: 10.1016/j.matchemphys.2014.06.043

[47]

Yang Z, Xu M, Liu Y, He F, Gao F, Su Y, Wei H, Zhang Y. Nanoscale, 2014, 6(3): 1890-1895. doi: 10.1039/C3NR05380F

[48]

Li X, Zhang S, Kulinich S A, Liu Y, Zeng H. Sci. Rep., 2014, 4: 4976-

[49]

Hu L M, Sun Y, Li S L, Wang X L, Hu K L, Wang L R, Liang X J, Wu Y. Carbon, 2014, 67: 508-513. doi: 10.1016/j.carbon.2013.10.023

[50]

Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B. Angew. Chem. Int. Ed., 2013, 52(14): 3953-3957. doi: 10.1002/anie.v52.14

[51]

Liang Q, Ma W, Shi Y, Li Z, Yang X. Carbon, 2013, 60: 421-428. doi: 10.1016/j.carbon.2013.04.055

[52]

Zhu C Z, Zhai J F, Dong S J. Chem. Commun., 2012, 48(75): 9367-9369. doi: 10.1039/c2cc33844k

[53]

Zhang Y Q, Ma D K, Zhuang Y, Zhang X, Chen W, Hong L L, Yan Q X, Yu K, Huang S M. J. Mater. Chem., 2012, 22(33): 16714-16718. doi: 10.1039/c2jm32973e

[54]

Zhu W, Song H, Zhang L, Weng Y, Su Y, Lv Y. RSC Adv., 2015, 5(74): 60085-60089. doi: 10.1039/C5RA08336B

[55]

Hsu P C, Chang H T. Chem. Commun., 2012, 48(33): 3984-3986. doi: 10.1039/c2cc30188a

[56]

Moon B J, Oh Y, Shin D H, Kim S J, Lee S H, Kim T W, Park M, Bae S. Chem. Mater., 2016, 28(5): 1481-1488. doi: 10.1021/acs.chemmater.5b04915

[57]

Fang Y X, Guo S J, Li D, Zhu C Z, Ren W, Dong S J, Wang E K. ACS Nano, 2012, 6(1): 400-409. doi: 10.1021/nn2046373

[58]

Wei X M, Xu Y, Li Y H, Yin X B, He X W. RSC Adv., 2014, 4(84): 44504-44508. doi: 10.1039/C4RA08523J

[59]

Kang Y F, Fang Y W, Li Y H, Li W, Yin X B. Chem. Commun., 2015, 51(95): 16956-16959. doi: 10.1039/C5CC06304C

[60]

Chen B B, Liu Z X, Deng W C, Zhan L, Liu M L, Huang C Z. Green Chem., 2016, 18(19): 5127-5132. doi: 10.1039/C6GC01820C

[61]

Tang L, Ji R, Li X, Teng K S, Lau S P. J. Mater. Chem. C, 2013, 1(32): 4908-4915. doi: 10.1039/c3tc30877d

[62]

Liu M L, Yang L, Li R S, Chen B B, Liu H, Huang C Z. Green Chem., 2017, 19(15): 3611-3617. doi: 10.1039/C7GC01236E

[63]

Liu S, Tian J Q, Wang L, Zhang Y W, Qin X Y, Luo Y L, Asiri A M, Al-Youbi A O, Sun X P. Adv. Mater., 2012, 24(15): 2037-2041. doi: 10.1002/adma.201200164

[64]

Wu Z L, Zhang P, Gao M X, Liu C F, Wang W, Leng F, Huang C Z. J. Mater. Chem. B, 2013, 1(22): 2868-2873. doi: 10.1039/c3tb20418a

[65]

HU Yue-Fang, ZHANG Liang-Liang, LIN Li-Yun, LI Xue-Feng, ZHAO Shu-Lin, LIANG Hong. Sci. Sin. Chim., 2017, 47(2): 258-266

胡月芳, 张亮亮, 林丽云, 李雪凤, 赵书林, 梁宏. 中国科学:化学, 2017, 47(2): 258-266

[66]

Hu Y, Zhang L, Li X, Liu R, Lin L, Zhao S. ACS Sustainable Chem. Eng., 2017, 5(6): 4992-5000. doi: 10.1021/acssuschemeng.7b00393

[67]

Yuan Y H, Liu Z X, Li R, Zou H Y, Lin M, Liu H, Huang C Z. Nanoscale, 2016, 8(12): 6770-6776. doi: 10.1039/C6NR00402D

[68]

Ding H, Yu S B, Wei J S, Xiong H M. ACS Nano, 2016, 10(1): 484-491. doi: 10.1021/acsnano.5b05406

[69]

Qu S, Zhou D, Li D, Ji W, Jing P, Han D, Liu L, Zeng H, Shen D. Adv. Mater., 2016, 28(18): 3516-3521. doi: 10.1002/adma.201504891

[70]

Lu S, Sui L, Liu J, Zhu S, Chen A, Jin M, Yang B. Adv. Mater., 2017, 29(15): 1603443-. doi: 10.1002/adma.201603443

[71]

Wang Q, Zhang S, Zhong Y, Yang X F, Li Z, Li H. Anal. Chem., 2017, 89(3): 1734-1741. doi: 10.1021/acs.analchem.6b03983

[72]

Singh S, Mishra A, Kumari R, Sinha K K, Singh M K, Das P. Carbon, 2017, 114: 169-176. doi: 10.1016/j.carbon.2016.12.020

[73]

Song Z, Quan F, Xu Y, Liu M, Cui L, Liu J. Carbon, 2016, 104: 169-178. doi: 10.1016/j.carbon.2016.04.003

[74]

Lin M, Zou H Y, Yang T, Liu Z X, Liu H, Huang C Z. Nanoscale, 2016, 8(5): 2999-3007. doi: 10.1039/C5NR08177G

[75]

Li H, Sun C, Vijayaraghavan R, Zhou F, Zhang X, MacFarlane D R. Carbon, 2016, 104: 33-39. doi: 10.1016/j.carbon.2016.03.040

[76]

Jeon S J, Kang T W, Ju J M, Kim M J, Park J H, Raza F, Han J, Lee H R, Kim J H. Adv. Funct. Mater., 2016, 26(45): 8211-8219. doi: 10.1002/adfm.201603803

[77]

Guo L, Ge J, Liu W, Niu G, Jia Q, Wang H, Wang P. Nanoscale, 2016, 8(2): 729-734. doi: 10.1039/C5NR07153D

[78]

Gong Y, Yu B, Yang W, Zhang X. Biosens. Bioelectron., 2016, 79: 822-828. doi: 10.1016/j.bios.2016.01.022

[79]

Zhang B X, Gao H, Li X L. New J. Chem., 2014, 38: 4615-4621. doi: 10.1039/C4NJ00965G

[80]

Qu D, Zheng M, Du P, Zhou Y, Zhang L, Li D, Tan H, Zhao Z, Xie Z, Sun Z. Nanoscale, 2013, 5(24): 12272-12277. doi: 10.1039/c3nr04402e

[81]

Dong Y Q, Pang H C, Yang H B, Guo C X, Shao J W, Chi Y W, Li C M, Yu T. Angew. Chem. Int. Ed., 2013, 52(30): 7800-7804. doi: 10.1002/anie.v52.30

[82]

Chandra S, Patra P, Pathan S H, Roy S, Mitra S, Layek A, Bhar R, Pramanik P, Goswami A. J. Mater. Chem. B, 2013, 1(18): 2375-2382. doi: 10.1039/c3tb00583f

[83]

Ge J, Jia Q, Liu W, Guo L, Liu Q, Lan M, Zhang H, Meng X, Wang P. Adv. Mater., 2015, 27(28): 4169-4177. doi: 10.1002/adma.v27.28

[84]

Zhang F, Feng X, Zhang Y, Yan L, Yang Y, Liu X. Nanoscale, 2016, 8(16): 8618-8632. doi: 10.1039/C5NR08838K

[85]

Jiang Y, Wang Z, Dai Z. ACS Appl. Mater. Interfaces, 2016, 8(6): 3644-3650. doi: 10.1021/acsami.5b08089

[86]

Choi Y, Kang B, Lee J, Kim S, Kim G T, Kang H, Lee B R, Kim H, Shim S H, Lee G, Kwon O H, Kim B S. Chem. Mater., 2016, 28(19): 6840-6847. doi: 10.1021/acs.chemmater.6b01710

[87]

Han Y, Tang D, Yang Y, Li C, Kong W, Huang H, Liu Y, Kang Z. Nanoscale, 2015, 7(14): 5955-5962. doi: 10.1039/C4NR07116F

[88]

Bourlinos A B, Trivizas G, Karakassides M A, Baikousi M, Kouloumpis A, Gournis D, Bakandritsos A, Hola K, Kozak O, Zboril R, Papagiannouli I, Aloukos P, Couris S. Carbon, 2015, 83: 173-179. doi: 10.1016/j.carbon.2014.11.032

[89]

Zhang L, Zhang Z Y, Liang R P, Li Y H, Qiu J D. Anal. Chem., 2014, 86(9): 4423-4430. doi: 10.1021/ac500289c

[90]

Shen P, Xia Y. Anal. Chem., 2014, 86(11): 5323-5329. doi: 10.1021/ac5001338

[91]

Shan X, Chai L, Ma J, Qian Z, Chen J, Feng H. Analyst, 2014, 139(10): 2322-2325. doi: 10.1039/C3AN02222F

[92]

Qian Z, Shan X, Chai L, Ma J, Chen J, Feng H. ACS Appl. Mater. Interfaces, 2014, 6(9): 6797-6805. doi: 10.1021/am500403n

[93]

Fei H, Ye R, Ye G, Gong Y, Peng Z, Fan X, Samuel E L G, Ajayan P M, Tour J M. ACS Nano, 2014, 8(10): 10837-10843. doi: 10.1021/nn504637y

[94]

Fan Z, Li Y, Li X, Fan L, Zhou S, Fang D, Yang S. Carbon, 2014, 70: 149-156. doi: 10.1016/j.carbon.2013.12.085

[95]

Dey S, Govindaraj A, Biswas K, Rao C N R. Chem. Phys. Lett., 2014, 595-596: 203-208. doi: 10.1016/j.cplett.2014.02.012

[96]

Jahan S, Mansoor F, Naz S, Lei J, Kanwal S. Anal. Chem., 2013, 85(21): 10232-10239. doi: 10.1021/ac401949k

[97]

Chen P C, Chen Y N, Hsu P C, Shih C C, Chang H T. Chem. Commun., 2013, 49(16): 1639-1641. doi: 10.1039/c3cc38486a

[98]

Wang F, Xie Z, Zhang H, Liu C Y, Zhang Y G. Adv. Funct. Mater., 2011, 21(6): 1027-1031. doi: 10.1002/adfm.201002279

[99]

Shi B, Su Y, Zhang L, Huang M, Liu R, Zhao S. ACS Appl. Mater. Interfaces, 2016, 8(17): 10717-10725. doi: 10.1021/acsami.6b01325

[100]

Hu S, Chang Q, Lin K, Yang J. Carbon, 2016, 105: 484-489. doi: 10.1016/j.carbon.2016.04.078

[101]

Wu W, Zhan L, Fan W, Song J, Li X, Li Z, Wang R, Zhang J, Zheng J, Wu M, Zeng H. Angew. Chem. Int. Ed., 2015, 54(22): 6540-6654. doi: 10.1002/anie.201501912

[102]

Liu Z X, Chen B B, Liu M L, Zou H Y, Huang C Z. Green Chem., 2017, 19(6): 1494-1498. doi: 10.1039/C6GC03288E

[103]

Liu X, Jiang H, Ye J, Zhao C, Gao S, Wu C, Li C, Li J, Wang X. Adv. Funct. Mater., 2016, 26(47): 8694-8706. doi: 10.1002/adfm.v26.47

[104]

Bourlinos A B, Bakandritsos A, Kouloumpis A, Gournis D, Krysmann M, Giannelis E P, Polakova K, Safarova K, Hola K, Zboril R. J. Mater. Chem., 2012, 22(44): 23327-23330. doi: 10.1039/c2jm35592b

[105]

Xu Y, Jia X H, Yin X B, He X W, Zhang Y K. Anal. Chem., 2014, 86(24): 12122-12129. doi: 10.1021/ac503002c

[106]

Du F, Zhang L, Zhang L, Zhang M, Gong A, Tan Y, Miao J, Gong Y, Sun M, Ju H, Wu C, Zou S. Biomaterials, 2017, 121: 109-120. doi: 10.1016/j.biomaterials.2016.07.008

[107]

Li F, Liu C, Yang J, Wang Z, Liu W, Tian F. RSC Adv., 2014, 4(7): 3201-3205. doi: 10.1039/C3RA43826K

[108]

Yuan Y H, Li R, Wang Q, Wu Z l, Wang J, Liu H, Huang C Z. Nanoscale, 2015, 7(40): 16841-16847. doi: 10.1039/C5NR05326A

[109]

Xu Q, Liu Y, Su R, Cai L, Li B, Zhang Y, Zhang L, Wang Y, Wang Y, Li N, Gong X, Gu Z, Chen Y, Tan Y, Dong C, Sreeprasad T S. Nanoscale, 2016, 8(41): 17919-17927. doi: 10.1039/C6NR05434J

[110]

Chen B B, Liu Z X, Zou H Y, Huang C Z. Analyst, 2016, 141(9): 2676-2681. doi: 10.1039/C5AN02569A

[111]

Liu M L, Chen B B, Yang T, Wang J, Liu X D, Huang C Z. Methods Appl. Fluores., 2017, 5(1): 015003-. doi: 10.1088/2050-6120/aa5e2b

[112]

Song Y, Zhu S, Yang B. RSC Adv., 2014, 4(52): 27184-. doi: 10.1039/c3ra47994c

[113]

Yao J, Yang M, Duan Y X. Chem. Rev., 2014, 114(12): 6130-6178. doi: 10.1021/cr200359p

[114]

Li G, Fu H, Chen X, Gong P, Chen G, Xia L, Wang H, You J, Wu Y. Anal. Chem., 2016, 88(5): 2720-2726. doi: 10.1021/acs.analchem.5b04193

[115]

Feng J, Wang W J, Hai X, Yu Y L, Wang J H. J. Mater. Chem. B, 2016, 4(3): 387-393. doi: 10.1039/C5TB01999K

[116]

Jin X Z, Sun X B, Chen G, Ding L X, Li Y H, Liu Z K, Wang Z J, Pan W, Hu C H, Wang J P. Carbon, 2015, 81: 388-395. doi: 10.1016/j.carbon.2014.09.071

[117]

Vedamalai M, Periasamy A P, Wang C W, Tseng Y T, Ho L C, Shih C C, Chang H T. Nanoscale, 2014, 6(21): 13119-13125. doi: 10.1039/C4NR03213F

[118]

Xu Y, Wu M, Yang Liu, Xi-Zeng Feng, Xue-Bo Yin, Xi-Wen He, Zhang Y K. Chem. Eur. J., 2013, 19(7): 2276-2283. doi: 10.1002/chem.v19.7

[119]

Choi Y, Kim S, Choi M H, Ryoo S-R, Park J, Min D H, Kim B S. Adv. Funct. Mater., 2014, 24(37): 5781-5789. doi: 10.1002/adfm.201400961

[120]

Sun S, Zhang L, Jiang K, Wu A, Lin H. Chem. Mater., 2016, 28(23): 8659-8668. doi: 10.1021/acs.chemmater.6b03695

[121]

Li R S, Gao P F, Zhang H Z, Zheng L L, Li C M, Wang J, Li Y F, Liu F, Li N, Huang C Z. Chem. Sci., 2017, (10): 6829-6835

[122]

Zheng M, Liu S, Li J, Qu D, Zhao H, Guan X, Hu X, Xie Z, Jing X, Sun Z. Adv. Mater., 2014, 26(21): 3554-3560. doi: 10.1002/adma.v26.21

[123]

Tao H, Yang K, Ma Z, Wan J, Zhang Y, Kang Z, Liu Z. Small, 2012, 8(2): 281-290. doi: 10.1002/smll.201101706

[124]

Tang J, Kong B, Wu H, Xu M, Wang Y, Wang Y, Zhao D, Zheng G. Adv. Mater., 2013, 25(45): 6569-6574. doi: 10.1002/adma.201303124

[125]

Wang J, Zhang P, Huang C, Liu G, Leung K C F, Wáng Y X J. Langmuir, 2015, 31(29): 8063-8073. doi: 10.1021/acs.langmuir.5b01875

[126]

Zheng M, Ruan S, Liu S, Sun T, Qu D, Zhao H, Xie Z, Gao H, Jing X, Sun Z. ACS Nano, 2015, 9(11): 11455-11461. doi: 10.1021/acsnano.5b05575

[127]

Feng T, Ai X, An G, Yang P, Zhao Y. ACS Nano, 2016, 10(4): 4410-4420. doi: 10.1021/acsnano.6b00043

[128]

Wei W, Xu C, Wu L, Wang J, Ren J, Qu X. Sci. Rep., 2014, 4: 3564-

[129]

Gao M X, Yang L, Zheng Y, Yang X X, Zou H Y, Han J, Liu Z X, Li Y F, Huang C Z. Chem. Eur. J., 2017, 23(9): 2171-2178. doi: 10.1002/chem.201604963

计量
  • PDF下载量(12)
  • 文章访问量(101)
  • HTML全文浏览量(2)

目录

异元素掺杂碳点的制备及其在生物成像中的应用

刘慧, 刘梦丽, 侯鹏, 黄承志

Figures and Tables