会员登陆: 用户名:  密码: 验证码:
首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   宋荣斌, 张剑荣, 朱俊杰. 微生物燃料电池在传感分析中的应用及研究进展. 分析化学, 2017, 45(12): 1824-1830. doi:  10.11895/j.issn.0253-3820.171303 [复制]

Citation:   SONG Rong-Bin, ZHANG Jian-Rong, ZHU Jun-Jie. Progresses and Prospects of Microbial Fuel Cell in Analytical Applications. Chinese Journal of Analytical Chemistry, 2017, 45(12): 1824-1830. doi: 10.11895/j.issn.0253-3820.171303 [复制]

微生物燃料电池在传感分析中的应用及研究进展

通讯作者:  朱俊杰, jjzhu@nju.edu.cn

收稿日期: 2017-10-08

接受日期: 2017-11-04

出版日期: 2017-12-20

基金项目: 本文系国家自然科学基金项目(Nos.21775067,21335004)资助

Progresses and Prospects of Microbial Fuel Cell in Analytical Applications

Corresponding author:  ZHU Jun-Jie, jjzhu@nju.edu.cn

Received Date:  2017-10-08

Accepted Date:  2017-11-04

Published Date:  2017-12-20

Fund Project:  This work was supported by the National Natural Science Foundation of China (Nos. 21775067, 21335004)

微生物燃料电池(Microbial fuel cell,MFC)是一种利用微生物将化学能直接转化为电能的装置。近年来,除改善微生物燃料电池的输出性能外,研究者也不断开发其在传感分析中的应用。基于微生物燃料电池的传感分析装置无需外加电源,具有操作简单、可连续检测等优点,是一种极具应用前景的传感分析技术。本文依据这些传感分析装置的用途进行分类,主要综述了微生物燃料电池在检测分析生化需氧量(BOD)、挥发性脂肪酸、毒性物质、微生物活性和数量以及其它方面的研究,并对其发展趋势和应用前景进行了展望。

关键词:   生物传感器, 微生物燃料电池, 自供能, 生物电化学, 评述
Key words:   Biosensors, Microbial fuel cell, Self-power, Bioelectrochemistry, Review
[1]

Logan B E. Nat. Rev. Microbiol., 2009, 7(5): 375-381. doi: 10.1038/nrmicro2113

[2]

Xie X, Criddle C, Cui Y. Energy Environ. Sci., 2015, 8(12): 3418-3441. doi: 10.1039/C5EE01862E

[3]

Potter M C. Proc. R. Soc. London Ser. B, 1911, 84(571): 260-276. doi: 10.1098/rspb.1911.0073

[4]

Zhao C E, Gai P P, Song R B, Chen Y, Zhang J R, Zhu J J. Chem. Soc. Rev., 2017, 46(5): 1545-1564. doi: 10.1039/C6CS00044D

[5]

Sun M, Zhai L F, Li W W, Yu H Q. Chem. Soc. Rev., 2016, 45(10): 2847-2870. doi: 10.1039/C5CS00903K

[6]

Franks A, Nevin K P. Energies, 2010, 3(5): 899-919. doi: 10.3390/en3050899

[7]

Wang H M, Park J D, Ren Z Y J. Environ. Sci. Technol., 2015, 49(6): 3267-3277. doi: 10.1021/es5047765

[8]

Li S, Cheng C, Thomas A. Adv. Mater., 2017, 29(8): 1602547-. doi: 10.1002/adma.201602547

[9]

Karube I, Matsunaga T, Mitsuda S, Suzuki S. Biotechnol. Bioeng., 1977, 19(10): 1535-1547. doi: 10.1002/(ISSN)1097-0290

[10]

Abrevaya X C, Sacco N J, Bonetto M C, Ohlsson A H, Corton E. Biosens. Bioelectron., 2015, 63: 580-590. doi: 10.1016/j.bios.2014.04.034

[11]

Abrevaya X C, Sacco N J, Bonetto M C, Ohlsson A H, Corton E. Biosens. Bioelectron., 2015, 63: 591-601. doi: 10.1016/j.bios.2014.04.053

[12]

Zhou M. Electroanalysis, 2015, 27(8): 1786-1810. doi: 10.1002/elan.v27.8

[13]

Prevoteau A, Rabaey K. ACS Sens., 2017, 2(8): 1072-1085. doi: 10.1021/acssensors.7b00418

[14]

Yang X Y, Tian G, Jiang N, Su B L. Energy Environ. Sci., 2012, 5(2): 5540-5563. doi: 10.1039/C1EE02391H

[15]

Liu J, Mattiasson B. Water Res., 2002, 36(15): 3786-3802. doi: 10.1016/S0043-1354(02)00101-X

[16]

Sun J Z, Kingori G P, Si R W, Zhai D D, Liao Z H, Sun D Z, Zheng T, Yong Y C. Water Sci. Technol., 2015, 71(6): 801-809. doi: 10.2166/wst.2015.035

[17]

Yang H J, Zhou M H, Liu MM, Yang W L, Gu T Y. Biotechnol. Lett., 2015, 37(12): 2357-2364. doi: 10.1007/s10529-015-1929-7

[18]

Chang I S, Jang J K, Gil G C, Kim M, Kim H J, Cho B W, Kim B H. Biosens. Bioelectron., 2004, 19(6): 607-613. doi: 10.1016/S0956-5663(03)00272-0

[19]

Zhang Y, Angelidaki I. Biosens. Bioelectron., 2012, 38(1): 189-194. doi: 10.1016/j.bios.2012.05.032

[20]

Xu L, Zhao Y Q, Fan C, Fan Z R, Zhao F C. Bioresour. Technol., 2017, 243: 846-854. doi: 10.1016/j.biortech.2017.06.179

[21]

Quek S B, Cheng L, Ruwisch R C. Water Res., 2015, 77: 64-71. doi: 10.1016/j.watres.2015.03.012

[22]

Moon H, Chang I S, Kang K H, Jang J K, Kim B H. Biotechnol. Lett., 2004, 26(22): 1717-1721. doi: 10.1007/s10529-004-3743-5

[23]

Chouler J, Bentley I, Vaz F, O'Fee A, Cameron P J, Lorenzo M D. Electrochim. Acta, 2017, 231: 319-326. doi: 10.1016/j.electacta.2017.01.195

[24]

Ayyaru S, Dharmalingam S. Anal. Chim. Acta, 2014, 818: 15-22. doi: 10.1016/j.aca.2014.01.059

[25]

Jia H, Guang Y, Ngo H H, Guo W S, Zhang H W, Gao F, Wang J. Chem. Eng. J., 2017, 327: 1117-1127. doi: 10.1016/j.cej.2017.06.181

[26]

Chang I S, Moon H, Jang J K, Kim B H. Biosens. Bioelectron., 2005, 20(9): 1856-1859. doi: 10.1016/j.bios.2004.06.003

[27]

Lorenzo M D, Curtis T P, Head I M, Scott K. Water Res., 2009, 43(13): 3145-3154. doi: 10.1016/j.watres.2009.01.005

[28]

Lorenzo M D, Thomason A R, Schneider K, Cameron P J, Ieropoulos I. Biosens. Bioelectron., 2014, 62: 182-188. doi: 10.1016/j.bios.2014.06.050

[29]

Kretzschmar J, Koch C, Liebetrau J, Mertig M, Harnisch F. Sens. Actuators B:Chem., 2017, 241: 466-472. doi: 10.1016/j.snb.2016.10.097

[30]

Jin X D, Angelidaki I, Zhang Y F. Environ. Sci. Technol., 2016, 50(8): 4422-4429. doi: 10.1021/acs.est.5b05267

[31]

Kaur A, Ibrahim S, Pickett C J, Michie I S, Dinsdale R M, Guwy A J, Premier G C. Sens. Actuators B, 2014, 201: 266-273. doi: 10.1016/j.snb.2014.04.062

[32]

Joo K H, Hyun M S, Chang I S, Kim B H. J. Microbiol. Biotechnol., 1999, 9(3): 365-367

[33]

Matsunaga T, Karube I, Suzuki S. Euro. J. Appl. Microbiol., 1980, 10(3): 235-243. doi: 10.1007/BF00508610

[34]

Chen Z J, Niu Y Y, Zhao S, Khan A, Ling Z M, Chen Y, Liu P. Biosens. Bioelectron., 2016, 85: 860-868. doi: 10.1016/j.bios.2016.06.007

[35]

Kim M, Hyun M S, Gadd G M, Kim H J. J. Environ. Monit., 2007, 9(12): 1323-1328. doi: 10.1039/b713114c

[36]

Yu D B, Bai L, Zhai J F, Wang Y Z, Dong S J. Talanta, 2017, 168: 210-216. doi: 10.1016/j.talanta.2017.03.048

[37]

Schneider G, Czeller M, Rostas V, Kovace T. Enzyme Microb. Technol., 2015, (73-74): 59-64

[38]

Li T, Wang X, Zhou L, An J K, Li J H, Li N, Sun H W, Zhou Q X. ACS Sens., 2016, 1(11): 1374-1379. doi: 10.1021/acssensors.6b00571

[39]

Yu J, Lefebvre O, Tan Z, Ng H Y. Environ. Sci. Technol., 2012, 65(7): 1223-1228

[40]

Yang W Y, Wei X J, Fraiwan A, Coogan C G, Lee H K, Choi S. Sens. Actuators B, 2016, 226: 191-195. doi: 10.1016/j.snb.2015.12.002

[41]

Stein N E, Hamelers H V M, Buisman C N J. Sens. Actuators B, 2012, 163(1): 1-7. doi: 10.1016/j.snb.2011.10.060

[42]

Stein N E, Hamelers H V M, Buisman C N J. Bioelectrochemistry, 2010, 78(1): 87-91. doi: 10.1016/j.bioelechem.2009.09.009

[43]

Shen Y J, Wang M, Chang I S, Ng H Y. Bioresour. Technol., 2013, 136(5): 707-710

[44]

Jiang Y, Liang P, Liu P P, Miao B, Bian Y H, Zhang H L, Huang X. Environ. Sci., 2017, 3(3): 472-479

[45]

Jiang Y, Liang P, Zhang C Y, Bian Y H, Yang X F, Huang X, Girguis P R. Bioresour. Technol., 2015, 190(14): 367-372

[46]

Tornt J M, Fortner J D, Plotze M, Hughes J B, Puzrin A M. Biotechnol. Lett., 2008, 30(8): 1385-1390. doi: 10.1007/s10529-008-9707-4

[47]

Tornt J M, Fortner J D, Plotze M, Hughes J B, Puzrin A M. Biosens. Bioelectron., 2008, 24(4): 586-590. doi: 10.1016/j.bios.2008.06.006

[48]

Kim T, Han J I. J. Environ. Manage., 2013, 130(1): 267-275

[49]

Patchett R A, Kelly A F, Kroll R G. Appl. Microbiol. Biotechnol., 1988, 28(1): 26-31

[50]

Yu Y Y, Wang J X, Si R W, Yang Y, Zhang C L, Yong Y C. Anal. Chim. Acta, 2017, 985: 148-154. doi: 10.1016/j.aca.2017.06.053

[51]

Yang Y, Yu Y Y, Wang Y Z, Zhang C L, Wang J X, Fang Z, Lyu H Y, Zhong J J, Yong Y C. Biosens. Bioelectron., 2017, 98: 338-344. doi: 10.1016/j.bios.2017.07.008

[52]

Asghary M, Raoof J B, Rahimnejad M, Ojani R. Biosens. Bioelectron., 2016, 82: 173-176. doi: 10.1016/j.bios.2016.04.023

计量
  • PDF下载量(14)
  • 文章访问量(104)
  • HTML全文浏览量(5)

目录

微生物燃料电池在传感分析中的应用及研究进展

宋荣斌, 张剑荣, 朱俊杰

Figures and Tables