引用本文: 张何, 王青, 傅昕, 赵智粮. 基于滚环扩增及串联G-四链体-血红素DNA酶的高灵敏“Turn-on”型Hg2+传感器研究. 分析化学, 2018, 46(10): 1644-1651. doi: 10.11895/j.issn.0253-3820.181346 [复制]
Citation: ZHANG He, WANG Qing, FU Xin, ZHAO Zhi-Liang. Fabrication of "Turn-On" Sensor for Sensitive Detection of Hg2+ Based on Rolling Circle Amplification and Tandem G-quadruplex-hemin DNAzymes. Chinese Journal of Analytical Chemistry, 2018, 46(10): 1644-1651. doi: 10.11895/j.issn.0253-3820.181346 [复制]
基于滚环扩增及串联G-四链体-血红素DNA酶的高灵敏“Turn-on”型Hg2+传感器研究
Fabrication of "Turn-On" Sensor for Sensitive Detection of Hg2+ Based on Rolling Circle Amplification and Tandem G-quadruplex-hemin DNAzymes
以聚苯乙烯微球为载体,利用滚环放大技术,发展了一种以串联G-四链体-血红素DNA酶催化及T-Hg2+-T特异识别为基础的"Turn-on"型Hg2+高灵敏生物传感器,用于尿液样本中Hg2+的高效检测。通过链霉亲和素和生物素的特异性结合,将富T生物素化Hg2+捕获探针固定至微球表面,当Hg2+存在时,通过形成T-Hg2+-T结构将含有G-四链体互补序列的环化单链DNA序列捕获至微球表面,滚环扩增后在微球表面产生大量包含串联G-四链体的DNA序列。当氯化血红素(Hemin)插入G-四链体后,形成具有增强催化活性的G-四链体-hemin DNA酶,可催化ABTS和H2O2反应形成ABTS·+,在420 nm处具有最大吸收。考察了多种因素对检测体系的影响,在最优实验条件下,此方法对Hg2+的线性检测范围为0.4~100 pmol/L,检出限为0.3 pmol/L(S/N=3),回归方程为ΔA420 nm=0.1+0.0019CHg2+(pmol/L)。当共存离子大量存在时,传感器对Hg2+仍然具有高的选择性。应用于尿液样品中Hg2+检测,加标回收率为94.0%~106.0%,相对标准偏差(RSD)为1.4%~2.6%。此方法具有良好的选择性、灵敏度及抗干扰能力,可用于复杂样品中Hg2+的检测。
Based on the tandem G-quadruplex-hemin DNAzymes for catalytic signal amplification and T-Hg2+-T structure for specific recognition, a highly sensitive "Turn-on" biosensor for detection of mercury ion (Hg2+) was developed on the polystyrene microbeads to achieve the detection of Hg2+ in urine samples. Through the specific binding of streptavidin and biotin, the T-rich biotinylated Hg2+ capture probe was immobilized on the surface of the microspheres. When Hg2+ was present in reaction system, the T-rich Hg2+ capture probe could capture the cyclic DNA containing G-quadruplex complementary fragments to the surface of beads by forming T-Hg2+-T structure. Through rolling circle amplification, a large number of tandem G-quadruplex forming sequences were amplified. When hemin was inserted into the G-quadruplex, a G-quadruplex-hemin DNAzyme with enhanced catalytic activity was formed, which could catalyze the oxidation of ABTS to ABTS·+ under the condition of H2O2. Finally, the absorbance difference at 420 nm was detected by UV-vis spectrophotometer. Under the optimal experimental conditions, the linear range for detection of Hg2+ was 0.4 pmol/L-100 pmol/L with the detection limit of 0.3 pmol/L, and the regression equation was ΔA420 nm=0.1+0.0019CHg2+ (pmol/L). This Hg2+ sensing system had excellent selectivity for Hg2+ against other possible competing ions. The fabricated sensor was applied to detection of Hg2+ in urine samples, the relative standard deviation and the recovery were 1.4%-2.6% and 94.0%-106.0%, respectively. The sensor had good selectivity, sensitivity, anti-interference ability and reliable detection capability for complex practical samples.
[1] |
Chen G, Guo Z, Zeng G, Tang L. Analyst, 2015, 140: 5400-5443. doi: 10.1039/C5AN00389J |
[2] |
Nolan E M, Lippard S J. Chem. Rev., 2008, 108: 3443-3480. doi: 10.1021/cr068000q |
[3] |
Wang M, Feng W, Shi J, Zhang F, Wang B, Zhu M, Li B, Zhao Y, Chai Z. Talanta, 2007, 71(5): 2034-2039. doi: 10.1016/j.talanta.2006.09.012 |
[4] |
Butler O T, Cook J M, Harrington C F, Hill S J, Rieuwerts J, Miles D L. J. Anal. At. Spectrum., 2006, 21: 217-243. doi: 10.1039/B516025C |
[5] |
Leermakers M, Baeyens W, Quevauviller P, Horvat M. TrAC-Trend. Anal. Chem., 2005, 24: 383-393. doi: 10.1016/j.trac.2004.01.001 |
[6] |
Zheng C B, Li Y, Ma Q, Hou X D. J. Anal. At. Spectrom., 2005, 20(8): 746-750. doi: 10.1039/b503727a |
[7] |
Lu J Q, He X W, Zeng X S, Wan Q J, Zhang Z Z. Talanta, 2003, 59(3): 553-560. doi: 10.1016/S0039-9140(02)00569-6 |
[8] |
JIAO Yang, ZHENG Shu-Dan, ZHOU Peng. Chin. J. Lumin., 2016, 37(3): 379-385 |
[9] |
Zhou J, Bourdoncle A, Rosu F. Angew. Chem. Int. Edit., 2012, 51(44): 11002-11005. doi: 10.1002/anie.201205390 |
[10] |
Bai D M, Ji D Y, Shang J H, Hu Y L, Gao J, Lin Z, Ge J, Li Z H. Sens. Actuators B, 2017, 252: 1146-1152. doi: 10.1016/j.snb.2017.07.181 |
[11] |
Ji D Y, Meng H M, Ge J, Zhang L, Wang H Q, Bai D M, Li J J, Qu L B, Li Z H. Microchim. Acta, 2017, 9: 3325-3332 |
[12] |
FU Xin, GU Dan-Yu, ZHAO Sheng-Dong, WEN Shi-Tong, ZHANG He. Chinese J. Anal. Chem., 2016, 44(10): 1487-1494. doi: 10.11895/j.issn.0253-3820.160508 傅昕, 顾丹玉, 赵圣东, 温世彤, 张何. 分析化学, 2016, 44(10): 1487-1494. doi: 10.11895/j.issn.0253-3820.160508 |
[13] |
Guo Y, Chen J, Cheng M, Monchaud D, Zhou J, Ju H. Angew. Chem. Int. Edit., 2017, 56(52): 16636-16640. doi: 10.1002/anie.201708964 |
[14] |
Xu M, Gao Z, Wei Q, Chen G, Tang D. Biosens. Bioelectron., 2015, 74: 1-7. doi: 10.1016/j.bios.2015.05.056 |
[15] |
Shimron S, Wang F, Orbach R, Willner I. Anal. Chem., 2012, 84: 1042-1048. doi: 10.1021/ac202643y |
[16] |
KONG De-Ming. Process. Chem., 2011, 23(10): 2119-2131 孔德明. 化学进展, 2011, 23(10): 2119-2131 |
[17] |
Wang F, Lu C H, Willner I. Chem. Rev., 2014, 114: 2881-2941. doi: 10.1021/cr400354z |
[18] |
Zhou W, Liang W, Li D, Yuan R, Xiang Y. Biosens. Bioelectron., 2016, 85: 573-579. doi: 10.1016/j.bios.2016.05.058 |
[19] |
Xiao Y, Pavlov V, Niazov T, Dishon A, Kotler M, Willner I. J. Am. Chem. Soc., 2004, 126: 7430-7431. doi: 10.1021/ja031875r |
[20] |
Li D, Shlyahovsky B, Elbaz J, Willner I. J. Am. Chem. Soc., 2007, 129: 5804-5805. doi: 10.1021/ja070180d |
[21] |
Jia S M, Liu X F, Li P, Kong D M, Shen H X. Biosens. Bioelectron., 2011, 27: 148-152. doi: 10.1016/j.bios.2011.06.032 |
[22] |
LIU Chen-Guang, WANG Jiu-Jun, ZHANG Xing-Ping, YANG Hua-Lin. Chinese J. Anal. Chem., 2017, 45(2): 163-168 |
[23] |
Zhang Q, Cai Y, Li H, Kong D M, Shen H X. Biosens. Bioelectron., 2012, 38: 331-336. doi: 10.1016/j.bios.2012.06.011 |
[24] |
Kong D M, Wang N, Guo X X, Shen H X. Analyst, 2010, 135: 545-549. doi: 10.1039/b924014d |
[25] |
Ren W, Zhang Y, Huang W T, Li N B, Luo H Q. Biosens. Bioelectron., 2015, 68: 266-271. doi: 10.1016/j.bios.2015.01.010 |
[26] |
ZHAO Qiu-Ling, LIU Ling-Ling, YANG Li-Na, ZHANG Zhen-Yu. Chinese J. Anal. Chem., 2014, 42(5): 683-688 |
[27] |
Li H L, Xu J G, Wang Z M, Wu Z S, Jia L. Biosens. Bioelectron., 2016, 86: 1067-1073. doi: 10.1016/j.bios.2016.07.095 |
[28] |
Zhang P P, Wang L, Zhao H Y, Xu X W, Jiang W. Anal. Chim. Acta, 2018, 1001: 119-124. doi: 10.1016/j.aca.2017.11.036 |
[29] |
Fernández E, Vidal L, Costa-García A, Canals A. Anal. Chim. Acta, 2016, 915: 49-55. doi: 10.1016/j.aca.2016.02.028 |
[30] |
Fong B M, Siu T S, Lee J S, Tam S. J. Anal. Toxicol., 2007, 31: 281-287. doi: 10.1093/jat/31.5.281 |
[31] |
ZHAO Qiu-Ling, ZHANG You-Hua, YU Xiao-Yan. Chinese J. Anal. Chem., 2016, 44(7): 1099-1105 |
[32] |
She P, Chu Y, Liu C, Guo X, Zhao K, Li J, Du H, Zhang X, Wang H, Deng A. Anal. Chim. Acta, 2016, 906: 139-147. doi: 10.1016/j.aca.2015.12.021 |
[33] |
Li F, Feng Y, Liu S F, Tang B. Chem. Commun., 2011, 47: 6347-6349. doi: 10.1039/c1cc11858g |
[34] |
Wang G, Xu G, Zhu Y, Zhang X. Chem. Commun., 2014, 50: 747-750. doi: 10.1039/C3CC46716C |
基于滚环扩增及串联G-四链体-血红素DNA酶的高灵敏“Turn-on”型Hg2+传感器研究
Fabrication of "Turn-On" Sensor for Sensitive Detection of Hg2+ Based on Rolling Circle Amplification and Tandem G-quadruplex-hemin DNAzymes
计量
- PDF下载量(39)
- 文章访问量(809)
- HTML全文浏览量(9)