引用本文: 迟绍明, 杨松霖, 晋文, 杨惠文, 王宇飞, 雷泽, 朱洪友, 赵焱. 花旗松素、槲皮素和桑色素与丙二胺桥联β-环糊精的包合作用及抗氧化活性. 分析化学, 2020, 48(2): 215-223. doi: 10.19756/j.issn.0253-3820.191554 [复制]
Citation: CHI Shao-Ming , YANG Song-Lin , JIN Wen , YANG Hui-Wen , WANG Yu-Fei , LEI Ze , ZHU Hong-You , ZHAO Yan . Inclusion and Antioxidant Properties of Taxifolin, Quercetin and Morin Hydrate with Diaminopropane Bridged Bis(β-cyclodextrin)s. Chinese Journal of Analytical Chemistry, 2020, 48(2): 215-223. doi: 10.19756/j.issn.0253-3820.191554 [复制]
花旗松素、槲皮素和桑色素与丙二胺桥联β-环糊精的包合作用及抗氧化活性
Inclusion and Antioxidant Properties of Taxifolin, Quercetin and Morin Hydrate with Diaminopropane Bridged Bis(β-cyclodextrin)s
黄酮类化合物花旗松素(TFL)、槲皮素(QCT)和桑色素(MH)具有抗氧化、抗炎、抗过敏、抗肿瘤等多种生物活性,但这些化合物水溶性差,口服利用率低,影响其药效的发挥。桥联β-环糊精(bis(β-CD) s)可通过两个环糊精空腔对客体分子的协同键合,增强环糊精对药物分子的键合能力,从而显著改善药物分子的水溶性。本研究考察了TFL、QCT和MH在溶液和固相中与丙二胺桥联β-环糊精(H2)的包合行为。通过紫外-可见吸收光光谱(UV-Vis)、一维核磁共振氢谱(1H NMR)、二维核磁共振氢谱(2D NMR)、扫描电子显微镜(SEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)等对3种包合物(TFL/H2、QCT/H2和MH/H2)进行表征。结果表明,3种黄酮类化合物的A环和C环分别从环糊精的小口端包结到H2的两个空腔中,形成1∶1夹心式的包结模式。3种包合物的稳定常数(KS)大小顺序为KMH/H2 > KTFL/H2 > KQCT/H2。主-客体的尺寸、形状匹配关系和氢键相互作用力,是影响包合物稳定的重要因素。形成包合物后,TFL、QCT和MH在水中的溶解度分别提高了130.2、180.4和210.1倍。此外,1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除法抗氧化活性实验结果表明,包合物TFL/H2、MH/H2的抗氧化活性显著增强了游离药物的活性。本研究为高水溶性、较好抗氧化活性的黄酮类化合物药物的开发提供了重要参考。
Taxifolin (TFL), quercetin (QCT) and morin hydrate (MH) are common flavonoids in nature. They have many biological activities, such as antioxidant, anti-inflammatory, anti-allergic, anti-tumor and so on, but these compounds have poor water solubility and low oral utilization rate, which hinder the pharmacological action of these compounds. The bridged bis(β-cyclodextrin)s (bis(β-CD)s) has been known as it can significantly alter the molecular binding ability and the water solubility toward drug molecules, through the cooperative binding of drug molecule by two hydrophobic cavities located in close vicinity. In this work, the inclusion behavior of TFL, QCT and MH with diaminopropane bridged bis (β-CD)s) (H2) in solution and solid phase was studied. The three inclusion complexes (TFL/H2, QCT/H2 and MH/H2) were characterized by ultraviolet visible spectrum (UV-VIS), 1H nuclear magnetic resonance spectrum (1H NMR), two-dimensional nuclear magnetic resonance spectrum (2D NMR), scanning electron microscope (SEM), X-Ray diffraction spectrum (XRD) and Fourier transform infrared spectroscopy (FT-IR). The results showed that the A ring and C ring of the three flavonoids were separately included in two β-CD cavities from narrow side of H2, forming a 1:1 cooperative sandwich binding mode. The order of stability constant (KS) of the three inclusion complexes was KMH/H2 > KTFL/H2 > KQCT/H2. The inclusion complex stability depended greatly on the host-guest size, shape matching relation and hydrogen bond interaction force. After the formation of inclusion complex, the solubility of TFL, QCT and MH in water increased by 130.2, 180.4 and 210.1 times, respectively. In addition, the antioxidant activities were determined by 1-diphenyl-2-trinitrophenylhydrazide (DPPH) radical scavenging method. Excitingly, the antioxidant activities of TFL/H2and MH/H2 inclusion complexes presented a satisfactory antioxidant activity, which was even higher than that of free drugs. The study provided an important reference for the development of flavonoids with high water solubility and good antioxidant activity.
[1] |
Yang S L, Zhao L J, Chi S M, Du J J, Ruan Q, Xiao P L, Zhao Y. J. Mol. Struct.,2019,1183:118-125 |
[2] |
Ban C, Park S J, Lim S, Choi S J, Choi Y J. J. Agric. Food Chem.,2015,63(21):5266-5272 |
[3] |
Pellow J, Nienhuis C. Complement. Ther. Med.,2018,37:13-26 |
[4] |
Mikawlrawng K, Rani R, Kumar S, Bhardwaj A R, Prakash G. J. Tradit. Complement. Med.,2018,8(1):4-10 |
[5] |
Sádaba L M, Fernández-Robredo P, Rodríguez J A, García-Layana A. Exp. Eye Res.,2008,86(3):470-479 |
[6] |
Kocábová J, Fiedler J, Degano I, Sokolová R. Electrochim. Acta,2016,187:358-363 |
[7] |
Andres S, Pevny S, Ziegenhagen R, Bakhiya N, Schäfer B, Hirsch-Ernst K I, Lampen A. Mol. Nutr. Food Res.,2018,62(1):1700447 |
[8] |
Yong H J, Ahn J J. Biomed. Dermatol.,2018,2(1):2-7 |
[9] |
Maciel E N, Almeida S K C, da Silva S C, de Souza G L C. J. Mol. Model.,2018,24(8):218 |
[10] |
Chen X M, Chen Y, Hou X F, Wu X, Gu B H, Liu Y. ACS Appl. Mater. Interfaces,2018,10(30):24987-24992 |
[11] |
Cheng H B, Zhang Y M, Liu Y, Yoon J. Chem,2019,5(3):553-574 |
[12] |
Cheng J G, Zhang Y M, Liu Y. ChemNanoMat,2018,4(8):758-763 |
[13] |
Guan X, Chen Y, Wu X, Li P, Liu Y. Chem. Commun.,2019,55(7):953-956 |
[14] |
Zhang Y, Liang L, Chen Y, Chen X M, Liu Y. Soft Mat.,2019,15(1):73-77 |
[15] |
Zhang Y M, Xu X, Yu Q, Yu H J, Liu Y. iScience,2019,15:223-233 |
[16] |
Zhang Y M, Liu Y H, Liu Y. Adv. Mater.,2019:1806158 |
[17] |
Liu Y, Chen G S, Li L, Zhang H Y, Cao D X, Yuan Y J. J. Med. Chem.,2003,46:4634-4637 |
[18] |
Liu Y, Chen G S, Chen Y, Cao D X, Ge Z Q, Yuan Y J. Bioorg. Med. Chem.,2004,12:5767-5775 |
[19] |
Menuel S, Joly J P, Courcot B, Elysee J, Ghermanid N E, Marsura A. Tetrahedron,2007,63:1706-1714 |
[20] |
Yang H W, Pan Z J, Jin W, Zhao L J, Xie P, Chi S M, Lei Z, Zhu H Y, Zhao Y. J. Incl. Phenom. Macrocycl. Chem.,2019,95:147-157 |
[21] |
Zhao L J, Yang S L, Jin W, Yang H W, Li F Y, Chi S M, Zhu H Y, Lei Z, Zhao Y. Aust. J. Chem.,2019,72:440-449 |
[22] |
Petter R C, Salek J S, Sikorski C T, Kumaravel G, Lin F T. J. Am. Chem. Soc.,1990,112(10):3860-3868 |
[23] |
Liu Y, Chen G S, Chen Y, Lin J. Biorg. Med. Chem.,2005,13(12):4037-4042 |
[24] |
Du J J, Zhao L J, Yang S L, Huang Y R, Chi S M, Ruan Q, Zheng P, Hu R, Zhao Y. J. Incl. Phenom. Macrocycl. Chem.,2019,93(3-4):203-213 |
[25] |
Zhang X R, Zhang L. J. Mol. Struct.,2017,1137:328-334 |
[26] |
Pu H, Sun Q, Tang P, Zhao L, Li Q, Liu Y, Li H. Food Chem.,2018,260:183-192 |
[27] |
Diamantis D A, Ramesova S, Chatzigiannis C M, Degano I, Gerogianni P S, Karadima K E, Perikleous S, Rekkas D, Gerothanassis I P, Galaris D, Mavromoustakos T, Valsami G, Sokolova R, Tzakos A G. Biochim. Biophys. Acta Gen. Sub.,2018,1862(9):1913-1924 |
[28] |
Kellici T F, Chatziathanasiadou M V, Diamantis D, Chatzikonstantinou A V, Andreadelis I, Christodoulou E, Valsami G, Mavromoustakos T, Tzakos A G. Int. J. Pharm.,2016,511(1):303-311 |
[29] |
Liu Y, You C C, Li B. Chem. Eur. J.,2001,7(6):1281-1288 |
[30] |
Benesi H A, Hildebrand J H. J. Am. Chem. Soc.,1949,71(8):2703-2707 |
[31] |
Li L, Cui G, Zhao M, Wang Y, Wang H, Li W, Peng S. J. Phys. Chem. B,2008,112(38):12139-12147 |
[32] |
Yang L J, Chang Q, Zhou S Y, Yang Y H, Xia F T, Chen W, Li M Y, Yang X D. Dyes Pigments,2018,150:193-201 |
[33] |
Natella F, Nardini M, Di Felice M, Scaccini C. J. Agric. Food Chem.,1999,47(4):1453-1459 |
[34] |
Aytac Z, Ipek S, Durgun E, Uyar T J. J. Mater. Sci.,2018,53(2):1527-1539 |
花旗松素、槲皮素和桑色素与丙二胺桥联β-环糊精的包合作用及抗氧化活性
Inclusion and Antioxidant Properties of Taxifolin, Quercetin and Morin Hydrate with Diaminopropane Bridged Bis(β-cyclodextrin)s
计量
- PDF下载量(38)
- 文章访问量(540)
- HTML全文浏览量(7)