引用本文: 张琳, 马明英, 李宝强, 孔景临, 张四纯, 张新荣. 纳米金辅助低温等离子体常压质谱快速检测化学毒剂模拟剂. 分析化学, 2020, 48(10): 1416-1421. doi: 10.19756/j.issn.0253-3820.201146 [复制]
Citation: ZHANG Lin , MA Ming-Ying , LI Bao-Qiang , KONG Jing-Lin , ZHANG Si-Chun , ZHANG Xin-Rong . Rapid Detection of Chemical Warfare Agent Simulants Using Gold Nanoparticles Substrate-assisted Enhanced Low Temperature Plasma-Mass Spectrometry. Chinese Journal of Analytical Chemistry, 2020, 48(10): 1416-1421. doi: 10.19756/j.issn.0253-3820.201146 [复制]
纳米金辅助低温等离子体常压质谱快速检测化学毒剂模拟剂
Rapid Detection of Chemical Warfare Agent Simulants Using Gold Nanoparticles Substrate-assisted Enhanced Low Temperature Plasma-Mass Spectrometry
低温等离子体探针-质谱(LTP-MS)技术可快速检测气、液、固态样品,具有操作简单、快速准确、易小型化等特点,非常适于化学毒剂的现场快速检测。化学毒剂维埃克斯(VX)和芥子气(HD)的毒性强、沸点高、挥发性差,常以气溶胶或液滴态分散于地面、装备或衣服等表面,采用LTP-MS检测存在解吸附难和离子化效率较低的问题。本研究建立了一种纳米金(AuNPs)基底辅助LTP-MS快速检测方法,实现了土壤中VX模拟剂马拉硫磷和HD模拟剂2-氯乙基乙基硫醚(CEES)的快速检测。在氦气出口压力为0.12 MPa、交流电源功率为75 W等优化实验条件下,两种模拟剂的质谱信号强度均比无AuNPs辅助时提高7~9倍。两种模拟剂在5.0~1000 μg/g浓度范围内有良好的线性关系,相关系数(R2)分别为0.9784和0.9915,检出限分别为1.5和1.0 μg/g。本方法通过AuNPs基底与等离子体作用有效提高了难挥发固、液态化合物的离子化效率,具有快速、准确、灵敏的特点,在化学毒剂检测等领域有潜在的应用前景。
The low temperature plasma (LTP) probe which can be used to quickly detect solid, liquid and gaseous samples has the characteristics of simple, fast and accurate, and easy to miniaturize. It has become a hot spot in the field of rapid detection of chemical warfare agents (CWAs). VX and HD have the characteristics of high toxicity, high boiling point and poor volatility. They are often dispersed on the surface of ground, equipment or clothing in the form of aerosols or droplets, which becomes a difficult problem for rapid detection on the spot. In this work, gold nanoparticles substrate-assisted low-temperature plasma-mass spectrometry was developed for rapidly detecting two CWA stimulants:malathion and 2-chloroethyl ethyl sulfide (CEES) in soil. Under the optimal conditions, the MS signal strength was improved by 7-9 times compared to the CWA simulants which were tested without the aid of gold nanoparticles. The experimental data of two simulants showed a good linear relationship between the signal and the concentration in the range of 5.0-1000 μg/g, with correlation coefficient (R2) of 0.9784 and 0.9915, and the limits of detection were 1.5 and 1.0 μg/g, respectively. The method could effectively improve the ionization efficiency of nonvolatile solid and liquid compounds through the interaction of gold nanoparticles and plasma. Also, the method was fast, accurate and sensitive, and had a good application prospect in the military field.
[1] |
Zuo G M, Cheng Z X, Li G W, Shi W P, Miao T. Chem. Engineer. J., 2007, 128(2-3):135-140 |
[2] |
Iwai T, Kakegawa K, Aida M, Nagashima H, Nagoya T, Kanamori-Kataoka M, Miyahara H, Seto Y, Okino A. Anal. Chem., 2015, 87(11):5707-5715 |
[3] |
Schwenk M, Toxicol. Lett., 2018, (293):253-263 |
[4] |
John H, Balszuweit F, Kehe K, Worek F, Thiermann H. Handbook of Toxicology of Chemical Warfare Agents, San Diego:Elsevier Academic Press Inc, 2009:755-790 |
[5] |
Jung H, Lee H W. J. Hazard. Mater., 2014, (273):78-84 |
[6] |
Tang F R, Loke W K. Crit. Rev. Toxicol., 2012, 42(8):688-702 |
[7] |
Witkiewicz Z, Neffe S, Sliwka, Quagliano J. Crit. Rev. Anal. Chem., 2018, 48(5):337-371 |
[8] |
Zelder F H. Inorg. Chem., 2008, 47(4):1264-1266 |
[9] |
Makinen M A, Anttalainen O A, Sillanpaa M E T. Anal. Chem., 2010, 82(23):9594-9600 |
[10] |
Puton J, Namiesnik J. TrAC-Trends Anal. Chem., 2016, 85:10-20 |
[11] |
Harris G A, Falcone C E, Fernandez F M. J. Am. Soc. Mass Spectrom., 2012, 23(1):153-161 |
[12] |
Snyder D T, Pulliam C J, Ouyang Z, Cooks R G. Anal. Chem., 2016, 88(1):2-29 |
[13] |
Savel'eva E I, Gustyleva L K, Orlova O I, Khlebnikova N S, Koryagina N L, Radilov A S. Russian J. Appl. Chem., 2014, 87(8):1003-1012 |
[14] |
Brkic B, France N, Taylor S. Anal. Chem., 2011, 83(16):6230-6236 |
[15] |
Krebs M D, Zapata A M, Nazarov E G, Miller R A, Costa I S, Sonenshein A L, Davis C E. IEEE Sens. J., 2005, 5(4):696-703 |
[16] |
Wiley J S, Shelley J T, Cooks R G. Anal. Chem., 2013, 85(14):6545-6552 |
[17] |
Dumlao M C, Jeffress L E, Gooding J J, Donald W A. Analyst, 2016, 141(12):3714-3721 |
[18] |
Wolf J C, Etter R, Schaer M, Siegenthaler P, Zenobi R. J. Am. Soc. Mass Spectrom., 2016, 27(7):1197-2202 |
[19] |
Huang G, Xu W,Visbal-Onufrak M A, Ouyang Z, Cooks R G. Analyst, 2010, 135(4):705-711 |
[20] |
Wolf J C, Schaer M, Siegenthaler P, Zenobi R. Anal. Chem., 2015, 87(1):723-729 |
[21] |
Budzynska E, Grabka M, Kopyra J, Maziejuk M, Safaei Z, Fliszkiewicz B, Wisnik M, Puton J. Talanta, 2019, 194:259-265 |
[22] |
Zhang L, Zhao X, Cheng H Y, Kong J L, Zhao Y Y, Zhu X W, Zhang S C, Zhang X R. Talanta, 2018, 190:403-409 |
[23] |
Albert A, Engelhard C. Anal. Chem., 2012, 84(24):10657-10664 |
[24] |
Harris G A, Galhena A S, Fernandez F M. Anal. Chem., 2011, 83(12):4508-4538 |
[25] |
Ma X X, Zhang S C, Zhang X R. TrAC-Trends Anal. Chem., 2012, 84(35):50-66 |
[26] |
Pakiari A H, Jamshidi Z. J. Phys. Chem. A, 2010, 114(34):9212-9221 |
[27] |
Hook G L, Kimm G, Koch D, Savage P B, Ding B, Simith P A. J. Chromatogr. A, 2003, 992(1-2):1-9 |
[28] |
Higdon N S,Chyba T H, Richer D A, Ponsardin P L, Armstrong W T, Lobb C T, Kelly B T, Babnick R D. Proc. SPIE, 2002, 4722):50-59 |
[29] |
G/SPS/N/CAN/1278(2019) Proposed Maximum Residue Limit:Malathion (PMRL2019-30) |
纳米金辅助低温等离子体常压质谱快速检测化学毒剂模拟剂
Rapid Detection of Chemical Warfare Agent Simulants Using Gold Nanoparticles Substrate-assisted Enhanced Low Temperature Plasma-Mass Spectrometry
计量
- PDF下载量(25)
- 文章访问量(168)
- HTML全文浏览量(3)