首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   郭聪, 朱中杰, 沈建雄, 张宗昌, 张建兵, 赵德明, 赵红卫. 谷胱甘肽的宽频太赫兹光谱研究. 分析化学, 2020, 48(10): 1367-1374. doi:  10.19756/j.issn.0253-3820.201148 [复制]

Citation:   GUO Cong , ZHU Zhong-Jie , SHEN Jian-Xiong , ZHANG Zong-Chang , ZHANG Jian-Bing , ZHAO De-Ming , ZHAO Hong-Wei . Broadband Terahertz Spectroscopy of Glutathione. Chinese Journal of Analytical Chemistry, 2020, 48(10): 1367-1374. doi: 10.19756/j.issn.0253-3820.201148 [复制]

谷胱甘肽的宽频太赫兹光谱研究

通讯作者:  赵德明, dmzhao@zjut.edu.cn; 赵红卫, zhaohongwei@sinap.ac.cn

收稿日期: 2020-03-21

基金项目: 本文系中国科学院微观界面物理与探测重点实验室项目和国防科技创新特区项目资助

Broadband Terahertz Spectroscopy of Glutathione

Corresponding author:  ZHAO De-Ming , dmzhao@zjut.edu.cn; ZHAO Hong-Wei , zhaohongwei@sinap.ac.cn

Received Date:  2020-03-21

Fund Project:  This work was supported by the Main Direction Program of Knowledge Innovation and Open Project Program of Key Laboratory of Interfacial Physics and Technology of Chinese Academy of Sciences and the National Defense Science and Technology Innovation Special Zone.

谷胱甘肽(Glutathione)的构型构象对其发挥生物学功能具有重要意义。本研究利用空气等离子体太赫兹时域光谱(THz-TDS)获得了还原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)在0.5~12.0 THz波段的吸收光谱,结果表明,GSH在太赫兹波段有丰富的特征吸收峰,而GSSG呈现单调无特征的吸收曲线。粉末X射线衍射(PXRD)结果表明,GSH具有一定的晶型结构而GSSG为无定形态,提示太赫兹光谱对物质晶体结构有敏感响应。利用密度泛函理论(DFT)对GSH晶胞结构进行计算和太赫兹振动光谱分析,结果表明,GSH分子能形成丰富的氢键,这些氢键网络有助于约束柔性肽分子并使分子有序地堆叠形成晶体。晶格和氢键与太赫兹波作用产生共振吸收,GSH的太赫兹光谱中不同吸收峰对应分子不同集体振动或局域振动,并且与氢键的振动密切相关。本研究结果有助于加深GSH分子构型构象和分子弱相互作用的认识。

关键词:   宽频太赫兹光谱, 还原型谷胱甘肽, 氧化型谷胱甘肽, 低频振动, 氢键
Key words:   Broadband terahertz spectroscopy, Reduced glutathione, Oxidized glutathione, Low frequency vibration, Hydrogen bond
[1]

Chen J, Jiang X, Zhang C, MacKenzie K R. ACS Sens., 2017, 2(9):1257-1261

[2]

Fiser B, Szori M, Jojart B, Izsak R, Csizmadia I G. J. Phys.Chem.B, 2011, 115(38):11269-11277

[3]

Schulz J B, Lindenau J, Seyfried J. Eur. J. Biochem., 2000, 267(16):4904-4911

[4]

Arscott L D, Veine D M, Williams C H. Biochemistry, 2000, 39(16):4711-4721

[5]

Nasr R, Lorendeau D, Khonkarn R, Dury L, Pérès B, Boumendgel A, Cortay J C, Falson P, Chaptal V, Cortay B H. Sci. Rep., 2020, 10(1):7616

[6]

Liedgens L, Zimmermann J, Wäschenbach L, Geissel F, Laporte H, Gohlger H, Morgan B, Deponte M. Nat. Commun., 2020, 11(1):1-18

[7]

Fliser B, Jójárt B, Csizmadia I G, Viskolcz B. Plos One, 2013, 8(9):e73652

[8]

Florio G M, Zwier T S. J. Phys. Chem. A, 2003, 107(7):974-983

[9]

Ghosh A, Ostrander J S, Zanni M T. Chem. Rev., 2017, 117(16):10726-10759

[10]

Qian W, Krimm S. Biopolymers, 1994, 34(10):1377-1394

[11]

Yamamoto N, Ito S, Nakanishi M, Chatani E, Tominaga K. J. Phys.Chem.B, 2018, 122(4):1367-1377

[12]

Hand K, Yates E. J. R. Soc. Interface, 2017, 14(136):20170673

[13]

Neu J, Stone E A, Spies J A, Hatano A S, Mercado B Q, Miller S J, Schmuttenmaer C A. J. Am. Chem. Soc., 2019, 10(10):2624-2628

[14]

Bakels S, Gaigeot M P, Rijs A M. Chem. Rev., 2020, 120(7):3233-3260

[15]

Vinh N Q, Allen S J, Plaxco K W. J. Am. Chem. Soc., 2011, 133(23):8942-8947

[16]

Nibali V C, Morra G. J. Phys. Chem. B, 2017, 121(44):10200-10208

[17]

Yamamoto K, Kabir M H, Tominaga K. J. Opt. Soc. Am. B, 2005, 22(11):2417-2426

[18]

Rutz F, Wilk R, Grunenberg J, Koch M. Proceedings of SPIE, 2005, 5727:12-19

[19]

Wang W N, Yan H T, Yue W W, Zhao J Z, Zhang C L, Liu H B, Zhang X C. Sci. China Ser. G, 2005, 48(5):585-592

[20]

Gorbitz C H. Acta Chem. Scand. B, 1987, 18(49):362-366

[21]

Wright W B. Acta Cryst., 1958, 11(9):632-642

[22]

Moggach S A, Lennie A R, Morrison C A, Richardson P. CrystEngComm, 2010, 12(9):2587-2595

[23]

Hübschle C B, Ruhmlieb C, Burkhardt A, Smaalen S V, Dittrich B. Zeitschrift für Kristallographie-Crystalline Materials, 2018, 233(9-10):695-706

[24]

Zhu Z J, Chen C, Chang C, Ren G H, Zhang J B, Peng Y, Han J G, Zhao H W. Analyst, 2019, 144(8):2504-2510

[25]

Karpowicz N, Dai J M, Lu X F, Chen Y Q, Yamaguchi M, Zhao H W, Zhang X C, Zhang L L, Zhang C L, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Appl. Phys. Lett., 2008, 92(1):011131

[26]

Xie X, Dai J, Zhang X C. Phys. Rev. Lett., 2006, 96(7):075005

[27]

Dai Z, Xu X, Gu Y, Cheng X, Chen Z, Sun M. J. Chem. Phys., 2017, 146(12):124119

[28]

Walther M, Fischer B M, Uhd Jepsen P. Chem. Phys., 2003, 288(2-3):261-268

[29]

Petersson B, Nielsen B B, Rasmussen H, Gajhede M, Nile P E, kastrup J S. J. Am. Chem. Soc., 2005, 127(5):1424-1430

[30]

Vasudev P G, Shamala N, Balaram P. J. Phys.Chem. B, 2008, 112(4):1308-1314

[31]

Strachan C J, Rades T, Newnham D A, Cordon K C, Pepper M, Taday P T. Chem. Phys. Lett., 2004, 390(1-3):20-24

[32]

Siegrist K, Bucher C R, Pfefferkorn C, Schwarzkopf A, Plusquellic D F. New Approaches Biomed. Spectros.:ACS Symposium Series, 2007, 963(18):280-296

[33]

Day G M, Zeitler J A, Jones W, Rades W, Taday P T. J. Phys. Chem., 2006, 110(1):447-456

[34]

Karamertzanis P G, Price S L. J. Chem. Theory Comput., 2006, 2(4):1184-1199

[35]

Mooij W T M, Eijck B P, Kroon J. J. Am. Chem. Soc., 2000, 122(14):3500-3505

[36]

Liu Y, Goddard W A. J. Phys. Chem. Lett., 2010, 1(17):2550-2555

[37]

Plusquellic D F, Siegrit K, Heilweil E J, Esenturk O. Chemphyschem, 2007, 8(17):2412-2431

[38]

Sibik J, Elliott S R, Zeilter J A . Phys. Chem. Lett., 2014, 5(11):1968-1972

[39]

Zhang F, Hayashi M, Wang H W, Tominaga K, Kambara O, Nishizawa J, Sasaki T. J. Chem. Phys., 2014, 140(17):174509

[40]

Rungsawang R, Ueno Yuko, Tomita I, Ajito K. J. Phys. Chem. B, 2006, 110(42):21259-21263

[41]

Fu X, Wu H, Xi X, Zhou J. J. Phys. Chem. A, 2014, 118(2):333-338

[42]

Desiraju G R. Cryst. Growth Des., 2011, 11(4):896-898

[43]

Park E Y, Shimura N, Konishi T, Sauchi Y, Wada S, Aoi W. J. Agric. Food Chem., 2014, 62(26):6183-6189

计量
  • PDF下载量(1)
  • 文章访问量(124)
  • HTML全文浏览量(0)

目录

谷胱甘肽的宽频太赫兹光谱研究

郭聪, 朱中杰, 沈建雄, 张宗昌, 张建兵, 赵德明, 赵红卫

Figures and Tables