首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

在线审稿投稿系统

在线阅读

搜索结果

基于粒子群算法-支持向量机-激光诱导击穿光谱技术对稻壳中铬元素的定量分析模型
周华茂 , 陈添兵 , 刘木华 , 徐将 , 何秀文 , 许方豪 , 姚明印
doi:  10.19756/j.issn.0253-3820.191731
为了对稻壳中重金属铬(Cr)含量进行快速测定,利用激光诱导击穿光谱技术(LIBS)获取了江西省鄱阳湖周边24组水田污染区稻壳中Cr元素的等离子体信号光谱数据。通过在422.04~445.94 nm波段范围内构建光谱九点平滑和归一化数据预处理,选择18组数据作为训练样本,另外6组作为测试样本,提出了基于粒子群算法(PSO)的支持向量机(SVM)参数调节优化方法。建立了PSO-SVM智能算法对Cr含量的LIBS定量分析模型,得到测试集均方根误差(RMSE)为7.83 μg/g,平均绝对误差百分比(MAPE)为4.10%,预测值与测定值之间的相关系数为0.9948。在同等条件下,采用联合区间偏最小二乘法(siPLS)预测6组样本浓度,其RMSE为22.58 μg/g,MAPE为6.17%,相关系数为0.9840。结果表明,PSO-SVM回归定量方法可用于LIBS农产品的成分分析,其分析效果优于siPLS。
关键词: 激光诱导击穿光谱, 粒子群算法-支持向量机, , 稻壳