会员登陆: 用户名:  密码: 验证码:
首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

在线审稿投稿系统

在线阅读

搜索结果

基于自加权变量组合集群分析法的近红外光谱变量选择方法研究
赵环 , 宦克为 , 石晓光 , 郑峰 , 刘丽莹 , 刘微 , 赵春英
doi:  10.11895/j.issn.0253-3820.171158
变量选择技术是光谱建模的重要环节。本研究提出了一种新的变量选择方法——自加权变量组合集群分析法(AWVCPA),首先通过二进制矩阵采样法(BMS)对变量空间进行采样;其次通过对变量出现频率(Fre)和偏最小二乘回归系数(Reg)两种信息向量(IVs)做加权处理,得到了每个光谱变量的贡献值,进而考虑到了Fre和Reg两类IVs对于光谱建模的影响;最后通过指数衰减函数(EDF)删除贡献小的波长点,进而实现特征变量选取。以啤酒和玉米两组近红外光谱数据为例,基于偏最小二乘法(PLS)建立啤酒中酵母浓度预测模型和玉米中油浓度预测模型,对比其它变量选择方法。研究表明,在相同条件下,基于AWVCPA变量选择方法建立的预测模型都取得了最优的预测精度,对啤酒中酵母浓度的预测,相比全光谱PLS模型,RMSEP由0.5348下降到0.1457,预测精度提高了72.7%;对玉米含油量的预测,相比全光谱PLS模型,预测均方根误差(RMSEP)由0.0702下降到了0.0248,预测精度提高了64.7%。
关键词: 近红外光谱, 化学计量学, 变量选择, 自加权变量组合集群分析法, 信息向量